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Bacterial biofilms – pathogenic matrices formed through bacterial communication 

and subsequent extracellular matrix secretion – characterize the majority of clinical 

bacterial infections.  Biofilms exhibit increased resistance to conventional antibiotics, 

necessitating development of alternative treatments.  Standard microbiological methods 

for studying biofilms often rely on in vitro systems with involved instrumentation for 

biofilm quantification, or destroy the biofilm in the process of characterization.  

Additionally, biofilm formation is sensitive to many growth parameters, and can exhibit a 

large degree of variability between repeated experiments.  This dissertation presents the 

development of systems designed to address these challenges through integration of 



 

 

continuous biofilm monitoring in a microfluidic platform, and through creation of a 

microfluidic platform for multiple assays performed on one biofilm formed in a single 

channel.  The microsystems developed in this work provide building blocks for 

developing controlled, high throughput testbeds for development and evaluation of drugs 

targeting bacterial biofilms.   

The first platform developed relied on optical density monitoring as a means for 

evaluating biofilm formation.  This method was noninvasive, as it used an external light 

source and array of photodiodes to evaluate biofilms by the amount of light transmitted 

through the microfluidic channel where they were grown.  The optical density biofilm 

measurement method and microfluidic platform were used to evaluate the dependence of 

biofilm formation on quorum sensing, an autoinducer-mediated intercellular 

communication process.  This system was also used in the first demonstration of biofilm 

inhibition and reduction by two different autoinducer-2 analogs.   

The second microfluidic system developed addressed the challenge of variability 

in biofilm formation.  Biofilms formed in a single microfluidic channel were partitioned 

by hydraulically actuated valves into three separate segments, which were then treated as 

representatives of the original biofilm in further experiments.  A novel photoresist 

passivation process was developed in order to create the multi-depth channels needed to 

accommodate both valve actuation and biofilm formation.  Biofilms grown in the device 

were uniform throughout, providing reliable experimental controls within the system.  

Biofilm partitioning was demonstrated by exposing three segments of one biofilm to 

varying detergent concentrations.   
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side channels and gradient mixer blocked by closed valves (solid black squares) b) 

Device operation during biofilm sectioning and exposure of biofilm sections to different 

concentrations of drugs, with side channels open and central channel trisected by two 

closed valves. .................................................................................................................. 139 
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1 Introduction 

1.1 Background and Motivation 

Bacterial biofilms characterize a large number of clinical infections.  One estimate 

suggests that 65% of all bacterial infections involve a biofilm [1].  Biofilms impede 

phagocytosis as well as penetration of leukocytes into their structure [2, 3], reducing the 

efficacy of host immune mechanisms.  Within biofilms, high rates of mutation and 

horizontal exchange of genetic material promote selection of antibiotic tolerance 

mechanisms [2, 4] – cells associated with a biofilm are 10-1000 times more resistant to 

antimicrobial agents than free-floating bacteria [5].  Unfortunately, biofilms occur in the 

majority of clinical infections, commonly forming on catheters, prosthetic joints, 

respiratory tract surfaces, and teeth [6].   

While the detailed study of biofilms has existed for decades [7], much remains 

unknown.  In the pursuit of understanding bacterial biofilms, a number of in vitro models 

have been developed not only for understanding biofilm biology, but also for evaluating 

biofilm response to environmental challenges such as exposure to antimicrobials [8-11].  

However, just as each clinically observed infection is unique, biofilms grown in vitro also 

show variability within and between platforms [12, 13].  This variability precludes 

reliable comparison of biofilms under experimental conditions to biofilms under control 

conditions.   

Standard microbiological methods for evaluating biofilms often rely on in vitro 

systems with involved biofilm quantification instrumentation, or destroy the biofilm itself 

during characterization.  Therefore, there is a need to develop compact systems that can 

noninvasively quantify biofilm properties.  Microfluidic sensing platforms are an ideal 



2 

 

solution for addressing the need for more rigorous study of physiologically relevant 

bacterial biofilms.  Microfluidic systems provide several advantages including 

inexpensive fabrication, highly parallel throughput, and small size.  While microfluidics 

are readily compatible with noninvasive, integrated sensing technologies, biofilms 

formed in microfluidics are still most commonly evaluated using external instrumentation 

such as confocal microscopy.   

This dissertation presents the systematic development of microfluidic systems for 

biofilm applications.  It is anticipated that the microfluidic biofilm model and testing 

methodology established in this dissertation will lay the foundation for on-chip 

development of clinically effective biofilm therapies. 

1.2 Summary of Accomplishments 

As described above, a number of tools exist for biofilm evaluation, each with its 

own set of advantages and disadvantages.  This dissertation pursues the development of 

tailored microfluidics for biofilm applications.  These microfluidic systems provide 

continuous feedback and a controllable microenvironment for highly parallel studies, and 

also address biofilm variability.   

1.2.1 Development of optical density monitoring of biofilms formed in 

microfluidics 

First, a microfluidic platform and methodology were developed for forming and 

observing bacterial biofilms in microfluidics.  As indicated above, microscale flow 

systems are capable of providing a fluidic and chemical microenvironment that may be 

tailored to the application.  In this work, a microfluidic channel serving as a biofilm 

reactor was integrated with external commercial off-the-shelf optical components to 
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provide continuous optical density measurements.  While optical density had been used 

previously to monitor biofilms formed in a macroscale flow cell [14], it had never been 

used to evaluate biofilms formed in microfluidics prior to this work.   

The microfluidic biofilm reactor and sensing technique were used to continuously 

and non-invasively observe the dependence of Escherichia coli biofilm formation on 

bacterial intercellular signaling, or quorum sensing.  The effect of quorum sensing on 

biofilms was evaluated by comparing changes in optical density of biofilms formed by 

wild type E. coli, and biofilms formed by E. coli incapable of synthesizing native 

signaling molecules known as autoinducers.  Additionally, the effect of adding a set 

concentration of autoinducer to autoinducer-null biofilms was investigated.  As optical 

density is not a standard biofilm metric, results were confirmed by evaluating 

morphological properties of the biofilms using confocal microscopy.  Statistical analysis 

was applied to assess the significance and repeatability of observed optical and 

morphological differences in the biofilms formed.   

1.2.2 Use of microfluidics and optical monitoring to evaluate quorum sensing 

inhibitors 

While the developed growth and measurement system described above in 

Section 1.2.1 was used to confirm the dependence of E. coli biofilm formation on 

bacterial communication, similar studies have been performed in other formats [15-17].  

The second major accomplishment of this dissertation was the use of the microfluidic 

system for optical biofilm measurement to evaluate new autoinducer analogs that inhibit 

bacterial intercellular communication.   
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The microfluidic platform was used to show that these autoinducer analogs not 

only prevent biofilm formation by E. coli and Pseudomonas aeruginosa, but can aid in 

clearance of preexisting biofilms when applied with a traditional antibiotic.  The 

capability of continuous optical density measurement confirmed that biofilm clearance 

was continuous and was initiated upon application of the treatment.   

1.2.3 Development of a valved microfluidic system for biofilm sectioning 

The microfluidic devices used in the above studies did provide for efficient 

biofilm testing by nature of the small volumes of autoinducer or autoinducer analog 

required for microscale biofilm studies.  However, biofilm variability was still observed 

between experiments.  For the purpose of drug development, control groups must 

produce an output with minimal variability to which the experimental groups can be 

compared.  The third major accomplishment presented in this dissertation is the design, 

fabrication, and testing of a microfluidic device not only enabling concurrent studies on 

the same chip, but also allowing for multiple experiments to be performed on the same 

biofilm, eliminating variation between biofilms due to device-to-device or experiment-to-

experiment variability.   

The device created in this work uses hydraulically actuated valves incorporated in 

the microfluidic device.  In realizing microchannels with multiple depths to accommodate 

valve actuation and biofilm growth, a novel mold fabrication technique was developed 

using sequentially patterned photoresist separated and passivated by conformal coatings 

using atomic layer deposition (ALD).  The capabilities of the resulting platform were 

demonstrated through trisecting mature biofilms using the integrated valves and exposing 

the three segments to different treatments on the same platform.   
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1.3 Literature Review 

The following section presents additional background information and a review of 

literature as applicable to this dissertation.  First, a discussion of bacterial biofilms is 

presented in order to provide more detail as to their intrinsic properties, with a focus on 

factors contributing to the severity of biofilm-associated infections.  While biofilms are 

formed by many species of bacteria, emphasis is placed on E. coli and P. aeruginosa 

biofilms throughout this discussion; due to my collaborators’ experience with these 

clinically relevant species as well as the large body of research surrounding them, E. coli 

and P. aeruginosa were used throughout this research as models of biofilm formation.  

Second, alternative biofilm eradication methods that minimize the use of traditional 

antibiotics are reviewed.  Next, traditional methods for studying biofilms and their 

response to antimicrobial treatments are discussed.  The subsequent section reviews 

advantages presented by microfluidic systems and relevant microsystems technologies.  

Finally, a summary of biofilm studies performed in microfluidics is presented in order to 

emphasize the novelty of the main accomplishments presented in this dissertation.   

1.3.1 Bacterial Biofilm Characteristics 

1.3.1.1 Biofilm Formation and Growth 

Biofilm formation is initiated by attachment of planktonic bacteria to surfaces in 

their environment.  The adhesion, initially tenuous, is strengthened by genetic pathways 

promoting the secretion of an extracellular matrix, which encourages both adhesion to the 

substrate as well as cohesion between cells to form microcolonies, as shown in Figure 

1.1.  The matrix stabilizes the developing biofilm and allows for proliferation of bacteria 

within the biofilm structure, while at the same time protecting the biofilm from attack by 
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host defense mechanisms.  Cells or entire fragments of a mature biofilm often slough off, 

traveling through the host and potentially spreading the infection to a different location. 

 

Figure 1.1. Diagram of the biofilm growth cycle, from bacterial adhesion to the substrate, formation of 

microcolonies, development of a mature structure, and detachment.  Reproduced from [18].  

Bacterial adhesion is the first stage of biofilm formation, and represents the onset 

of infection.  Over the growth progression, biofilm cohesion and adhesion to the substrate 

are thought to be general indications of the maturity and strength of the biofilm.  

Interestingly, even within a species, environmental conditions can affect the degree of 

adhesion [18].  Pratt and Kolter demonstrated that E. coli K-12 grown in Lysogeny broth 

(LB) or in minimal media supplemented with casamino acids is capable of forming 

biofilms on abiotic surfaces, but is unable to initiate biofilm formation in unaltered 

minimal media [19].  In contrast, E. coli O157:H7 biofilms grown in low nutrient media 

have been shown to form more quickly and have more extracellular matrix than biofilms 

grown in media with high nutrient concentrations [20].   

A number of studies have indicated that motility is essential for biofilm initiation 

and survival [18, 21].  First, motility can aid in bringing cells to the substratum, as in the 

flagellar-mediated swimming of E. coli and P. aeruginosa necessary to convey bacteria 
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close enough to the surface to initiate adhesion events.  In E. coli, deletion or mutation of 

genes responsible for synthesis and functioning of flagella and type-I pili have yielded 

less biofilm-associated biomass as compared to wild type biofilms [15, 19].  Similarly in 

P. aeruginosa, dysfunctional flagella prevent biofilm formation [22].  Motility also 

mediates the aggregation of individual cells on the substratum into microcolonies.  

Mutation of type-IV pili and associated twitching motility in P. aeruginosa has been 

demonstrated to inhibit formation of microcolonies and structured biofilms [22].  

However in E. coli, microcolony formation is largely mediated by flagella [19].  During 

the transition from separate microcolonies to a mature biofilm, adhesion to the substrate 

and cohesion within the biofilm remain critical for maintenance and maturation of the 

biofilm, as biofilm adhesion increases with growth time and with biofilm thickness [23].   

The cohesiveness of a biofilm and its ability to retain its structure are partially 

determined by the composition of the extracellular matrix.  This matrix is heterogeneous 

in nature and typically consists of a variety of biopolymers, known collectively as 

extracellular polymeric substance (EPS).  EPS is typically composed of different types of 

polysaccharides, proteins, and DNA fragments existing in a hydrated network, 

enveloping the constituent bacteria [24].  While the exact composition of E. coli biofilms 

varies between reports, the most common major components include cellulose, β-1,6-N-

acetyl-D-glucosamine polymer (PGA), and colanic acid [25].  P. aeruginosa biofilms 

typically contain alginate, Pel (a glucose-rich polysaccharide encoded by the pel operon), 

and Psl (a mannose, glucose, and rhamnose-rich polysaccharide encoded by the psl 

operon) [26].  
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One challenge to biofilm research is the sensitive and variable nature not only of 

bacterial growth, but also of biofilm development itself [27].  Typically, wide spreads in 

biological data are narrowed by repeating an experiment multiple times, as increasing the 

sample size increases the likelihood of obtaining data representative of the population.  

Compounding the variability within one set of experiments is the variability observed 

between studies; as Beloin and Ghigo noted in a review [28], three different analyses of 

E. coli gene expression in biofilms found only two genes in common [29-31].  While 

more studies and standardization of methods between laboratories will clarify trends 

between biofilm models, it may be the case that no two biofilms can be compared.    

1.3.1.2 Transport Within Biofilms and Between their Environments 

As a biofilm grows, the thickness increases as bacteria divide and secrete more 

EPS.  The thickness and overall morphology of the biofilm are dependent on the physical 

and chemical environment.  Metabolic activity within the biofilm is dependent on the 

diffusion of nutrients, waste products, and other metabolites throughout the structure; this 

diffusion is in turn reliant on the biofilm structure and the environmental hydrodynamic 

properties, such as shear stress imposed on the biofilm.  Conversely, the biofilm itself 

interacts with the local environment, chemically altering concentration gradients and 

physically altering flow profiles; the morphological properties of the biofilm are thus 

developed through feedback between the bacteria and the environment.  A number of 

mathematical models of biofilm formation have been developed [32-34], and typically 

involve accounting for accumulation rates and transfer of cells, nutrients, oxygen, and 

metabolites within a biofilm reactor, as summarized in Figure 1.2.   
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Figure 1.2. Diagram representing a common mathematical biofilm model accounting for interrelated processes 

in a biofilm reactor.  Reproduced from [33].   

Changes in biomass, corresponding to the biofilm thickness, rely on metabolic 

growth rates dependent on substrate and oxygen availability; these may be modeled using 

Monod kinetics combined with species conservation in the system, summarized by 

   

  
 

    

  
       

 

where ρi is the mass concentration of species i, niz is the mass flux of species i in the z-

direction (normal to the substrate), and ri is the rate of production of i [32].   

In addition to dynamics associated with bacterial growth, division, and death, the 

fluidic environment influences the biofilm by creating convective flux of molecules into 

and away from the biofilm.  Additionally, flow over the biofilm imposes shear forces that 

can delaminate cells or segments of biofilm.  The shear stress in a flow cell is a function 

of flow rate, growth media viscosity, chamber dimensions, biofilm thickness and 

roughness, over time.  Biofilms formed under large amounts of shear stress, which may 

be created in a flow cell reactor or in vivo in arterial vasculature, are often thinner and 
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more densely packed than undisturbed biofilms [15, 32, 35].  Rochex et al. showed that 

shear stress affects the composition, diversity, and maturation rate of biofilms [36].  

Additionally, Chen et al. showed that the degree of adhesion, evaluated using 

micromanipulation, is also dependent on the shear rate at which the biofilm is formed 

[37].  Therefore, when evaluating a biofilm and its response to stimuli, the chemical and 

physical environment in which it was formed must be considered. 

1.3.1.3 Chemical Sensitivity and Antibiotic Resistance 

Bacterial biofilms exhibit elevated resistance to antibiotic treatment, compared to 

bacterial suspensions.  There are a number of hypotheses and research investigations 

concerning what mechanisms enable biofilm resistance and tolerance of antibiotics [4, 

38].  Figure 1.3 illustrates four of these mechanisms.   

 

Figure 1.3. Illustration of antibiotic resistance mechanisms in biofilms, indicating several contributors that 

individually reduce the impact of antibiotics on a biofilm.  Reproduced from [4].  

First, the EPS itself can reduce the potency of antibiotics applied to biofilms.  

Antibiotics that interact with the EPS are often prevented from completely penetrating 

thick biofilm layers [39-41].  For example, a major component of the P. aeruginosa EPS, 

alginate, is anionic, and can bind cationic antimicrobial agents and retard their diffusion 

into the biofilm [42].  However, other studies have shown that slow diffusion of 
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antibiotics through the EPS might not be a function of the EPS composition, but rather of 

other factors secreted by the constituent bacteria [43] or of the type of antibiotic and 

bacterial species [44].  For instance, while tetracycline penetrates completely into E. coli 

biofilms [45], it does not completely eliminate the biofilm, supporting multiple 

mechanisms of antibiotic resistance that encompass a range of antibiotics and growth 

conditions.  Altered chemical environments within the biofilm, for example by 

accumulation of acidic waste products [46], are also hypothesized to interfere with 

antibiotic activity [47, 48] and promote resistance.   

Second, high rates of conjugation have been observed within biofilms, and are 

largely a function of the large number of contact points between cells in a biofilm [49, 

50].  Horizontal gene transfer often promotes biofilm survival, as genes coding for 

behaviors such as antibiotic or metal resistance are often carried on plasmids that can be 

transferred between cells [51].  Interestingly, Ghigo showed that conjugative plasmids 

themselves encourage biofilm formation, and suggested that conjugative pili connections 

between cells can initiate adhesion events between cells, and thereby contribute to 

biofilm cohesion [52].   

Third, the chemical environment within biofilms is believed to promote antibiotic 

tolerance by altering bacterial rates of metabolism and growth, thereby removing 

antibiotic targets.  There is evidence of hypoxic conditions deep within biofilms, shown 

by the upregulation of genes associated with oxygen limitation.  For example, Schembri 

et al. observed increased expression in E. coli biofilms of the cydAB and b2297-hybAC 

gene clusters, shown to be induced in oxygen-limited environments [31].  As seen in 

experiments with planktonic cultures, lack of nutrients or oxygen will lower rates of 
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metabolism and growth; bacteria in biofilms have also been shown to have slower growth 

rates than bacteria in suspension [44].  Targets of antibiotics are typically processes vital 

to actively growing bacteria, such as metabolism or cell wall production.  Removal of 

these targets in slow-growing bacteria in biofilms is thought to contribute to antibiotic 

tolerance of biofilms.   

Differences in nutrient concentrations and anaerobic niches within the biofilms 

can lead to persister cells.  Persister cells are cells which have entered a dormant, inactive 

stage that are often compared to spores, and can persist even in prolonged exposure to 

elevated antibiotic concentrations.  Similar to the slow-growing cells within the biofilm, 

the antibiotic tolerance of persisters is thought to be at least partially due to the removal 

of antibiotic targets due to their dormant state.  Under favorable conditions, persisters can 

revert to live cells and reseed biofilm formation [53, 54].   

In addition to antibiotics, biofilms also exhibit resistance to treatment with 

chemical agents such as sodium dodecyl sulfate (SDS), a hydrophobic agent that serves 

as a detergent. Biofilm resistance to SDS treatment can be used as a metric to evaluate 

biofilm stability [55-57].  As an example, this technique was used by Davies et al., who 

observed that biofilms formed by P. aeruginosa with a mutation hypothesized to weaken 

the ECM were removed from the growth chamber after exposure to SDS more easily than 

wild type biofilms [56].   

1.3.1.4 Bacterial Quorum Sensing and Biofilms 

Many types of bacteria communicate with each other biochemically in a behavior 

known as quorum sensing (QS).  Quorum sensing molecules, or autoinducers, are 

synthesized and secreted into the extracellular environment.  Bacteria are capable of 
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detecting the surrounding concentration of autoinducers either by nonspecific uptake of 

the molecules or through autoinducer binding to a receptor, which both in turn will create 

a population-dependent, intracellular cascade regulating a number of genes associated 

with QS [58], as illustrated in Figure 1.4.  Numerous genes are thought to be regulated by 

QS activity; many of these genes control phenotypes associated with bacterial 

pathogenicity, including the secretion of toxins and the formation of biofilms [58, 59].   

 

Figure 1.4. Schematic of behaviors switched on by QS and accumulation of autoinducer molecules in the 

extracellular environment.  Reproduced from [59]. 

While QS systems vary between different types of bacteria, particularly between 

Gram positive and negative bacteria, the second class of autoinducer, AI-2, is referred to 

as “universal” since its synthase, LuxS, is found in more than 70 bacterial species [60].  

Strains that are believed to use AI-2 for intercellular communication include Vibrio 

harveyi, Salmonella typhimirium, and E. coli [61].  In E. coli, AI-2 is synthesized in a 

multistep process, using the enzymes Pfs and LuxS to convert S-adenosyl-L-

homocysteine (SAH) to 4,5-dihydroxy-2,3-pentanedione (DPD).  DPD is cyclized and 

undergoes further restructuring to yield AI-2, which is then secreted.  AI-2 has been 
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shown to be imported into cells both through interactions with the AI-2 transporter 

encoded by the lsrACDB operon, and also through non-specific uptake [62].  

Intracellularly, the molecule is phosphorylated by LsrK, after which it interacts with the 

repressor LsrR, allowing for transcription of the lsr operon, including genes regulating 

AI-2 uptake and processing [63]. 

QS is of particular interest as it controls a number of processes contributing to the 

formation of biofilms by a bacterial community.  Figure 1.5 illustrates several 

contributors to biofilms that have been linked to QS.   

 

Figure 1.5. Illustration of aspects of bacterial biofilm formation and growth influenced by QS.  Reproduced 

from [64]. 

P. aeruginosa uses QS extensively to modulate both biofilm formation and 

maturation, using acyl-homoserine lactone (AHL) molecules in autoinducer-1 (AI-1) 

signaling.  It has been shown that P. aeruginosa deficient in producing AHLs formed 

thinner biofilms that were more sensitive to detergents compared to wild-type biofilms 

[56].  Also, AHLs were found at higher concentrations in P. aeruginosa biofilms than in 

planktonic cultures [65].  In E. coli biofilms, addition of AI-2 was shown to increase 

biofilm mass 30-fold [15].  E. coli strains lacking the AI-2 signaling regulators lsrK and 
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lsrR have been observed to form thinner biofilms than wild type E. coli [16].  AI-2 has 

also been linked to E. coli motility [15, 25] and EPS synthesis [17], discussed in 

Section 1.3.1.1 as major contributors to biofilm formation.  While P. aeruginosa 

primarily uses the AI-1 QS system for communication and does not synthesize AI-2, gene 

expression in this species can still be regulated by extracellular AI-2 produced by 

surrounding microflora [66].  These genes include virulence genes, such as rhamnolipid 

production and exotoxin genes, implying that AI-2 is capable of altering P. aeruginosa 

gene expression and pathogenicity [66].  Interestingly, QS does not appear to have a 

significant impact on the formation of persister cells, an additional contributor to chronic 

biofilm infections.  Unpublished studies mentioned in a review by Lewis refer to 

experiments evaluating the effect of AI-2 on the incidence of persister cells [54].  These 

experiments were performed by adding spent media with high concentrations of AI-2 to a 

new culture of bacteria, which was treated with a large dose of antibiotic.  No increase or 

decrease in persister cell incidence was observed [54].   

While QS is a major contributor to infection severity, QS itself is not essential to 

bacterial growth and survival.  As a result, inhibition of QS has been pursued as an 

alternative antibacterial treatment [67-69], whereby phenomena such as biofilm 

formation and toxin secretion could be circumvented.  QS inhibition will be discussed 

later in this chapter in Section 1.3.2.4. 

1.3.2 Alternative Biofilm Treatments 

Considering both the rise of multi-drug resistant bacteria and the increased 

antibiotic tolerance of bacteria in a biofilm, the need for an alternative treatment approach 

is evident [4].  While a number of nontraditional methods for preventing or eliminating 
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bacterial biofilms are being pursued by the scientific community at large, two approaches 

currently under study by my colleagues and collaborators are presented below.  

1.3.2.1 Bioelectric Effect 

Exposure of a biofilm to an electric field applied in conjunction with antibiotics 

has been observed to enhance the normal biocidal activity of antibiotics in a phenomenon 

termed the “bioelectric effect” [70, 71].  Researchers have proposed a number of 

hypotheses for the mechanism of augmented bacterial killing by the bioelectric effect.  

The applied electric field may enhance the penetration of antibiotics into the EPS, either 

by applying electrophoretic force to antibiotic molecules or by increasing cell membrane 

permeability similar to electroporation [72, 73].  With a weakened first line of defense, 

biofilms can more readily be treated with antibiotics.  Additionally, oxidants may be 

electrochemically generated upon application of the electric field and can impede normal 

antibiotic activity [71, 72, 74].  Stoodley et al. also postulated that the biofilm may 

expand and contract depending on the polarity of an applied alternating current electric 

field, and thereby enhance convective transport of antibiotics into the biofilm [72].  

Studies of the bioelectric effect throughout literature implemented either an AC or 

a DC electric field, but never a combination of the two.  Within my research group, Kim 

et al. demonstrated the enhanced efficacy of biofilm inhibition by the bioelectric effect by 

combining alternating and direct current (AC and DC) electric fields [75, 76].  By using 

different modes of electrical energy applied, the applied voltage at which inhibition was 

observed was reduced below the limit for water electrolysis (0.82 V).  This presents a 

significant advantage, as much of the body of work on the bioelectric effect relies on 

applying voltages above this threshold, potentially generating gas within the solution.  
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While hydrolysis may contribute to bacterial biofilm killing by the bioelectric effect, the 

products can damage surrounding microflora or host cells near the biofilm and applied 

electric field.  

1.3.2.2 Quorum Sensing Inhibition 

Quorum sensing is thought to be an ideal drug target for the development of new 

antimicrobials, as it does not influence cell growth or viability, as discussed in 

Section 1.3.1.4.  Consequently, there have been many studies on QS inhibitors with the 

hypothesis that development of resistance to this treatment will either not occur or be 

delayed.  Much work has been performed developing analogs of AHL molecules [68, 69].  

The effects of these analogs on both QS and biofilm formation have been evaluated and 

verified [77, 78].  Importantly, small molecule inhibitors of AI-1-based QS were shown 

to work synergistically with antibiotics in clearing biofilms formed in vivo [79, 80].   

As AI-2 is involved in QS in over 70 species of bacteria, AI-2 signaling inhibitor 

development, as reviewed by Guo et al. [67], has the potential for widespread scientific 

and clinical utility.  There has been recent development of different AI-2 analogs shown 

to be effective QS inhibitors [81-84].  C-1 alkyl analogs of AI-2, including isobutyl-DPD, 

were developed and shown by my collaborators to be highly effective broad species QS 

inhibitors in E. coli, S. typhimurium and V. harveyi [83, 84].  Isobutyl-DPD is 

phosphorylated by LsrK in E. coli and inhibits QS-related lsr expression in the presence 

of the repressor of the circuit LsrR [84].  Additionally, Gamby et al. showed that a 

different C-1 alkyl analog, phenyl-DPD, inhibits QS-dependent production of pyocyanin 

in P. aeruginosa [85].  While AI-2 analogs able to inhibit QS in several types of bacteria 
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have been developed, prior to the work performed in this dissertation there were no 

detailed studies of how these analogs affect bacterial biofilms. 

1.3.3 Macroscale Evaluation of Biofilms 

1.3.3.1 Biofilm Reactors 

In developing biofilm science and investigating new ways to eliminate biofilms, 

researchers employ a variety of formats for growing biofilms and for evaluating their 

characteristics.  Microwell plates are one of the most common formats for growing static 

biofilms.  Microwell plate readers are staples in molecular biology and microbiology 

laboratories, and can typically measure optical absorbance, fluorescence, luminescence, 

and even scattered light.  Advanced robotic systems for filling and mixing reagents in 

microwells exist to streamline the laboratory workflow and minimize time invested by 

the researcher.   

As opposed to static biofilm reactors, growing biofilms under flow provides a 

continuous supply of nutrients to the biofilm in addition to aiding in continuous removal 

of planktonic cells, separate from the biofilm, from the system.  Flow cells can be 

purchased commercially, purchased from research groups, or can be custom-machined in 

plastic such as polystyrene. [9, 86].  They typically have one inlet, one outlet, and one 

main channel throughout which biofilms are formed.  Many of the flow cells have a 

transparent floor made from a slide or coverslip, and are designed to be mounted on a 

microscope stage for imaging during growth.  Such a configuration allows for continuous 

monitoring of biofilm physiology, or of genetic expression visible via fluorescent protein 

expression.  However, if chemical sensitivity is to be evaluated, the entire biofilm must 
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be exposed to the treatment due to the typical reactor configuration, requiring comparison 

of separately grown biofilms in order to evaluate control and experimental groups.    

The modified Robbins device is similar to standard flow cells in that a constant 

flow of growth media is provided.  However, the device contains multiple specimen 

plugs on which biofilms can be grown, as shown in Figure 1.6 [11].  After biofilm 

formation, the plugs can be removed and placed in antibiotic solutions to test for 

antibiotic susceptibility, or sonicated to remove the biofilm cells and determine the viable 

cell content.  While biofilms are grown in parallel, their analysis remains serial in this 

configuration.   

 

Figure 1.6. Schematic of Modified Robbins Device, indicating fluidic connections and plugs upon which biofilms 

grow.  Reproduced from [11].   

The Calgary Biofilm Device [8] combines the high-throughput biofilm formation 

provided by a microwell plate with the application of consistent shear stress provided by 

the modified Robbins device.  The reaction vessel has two components, illustrated in 

Figure 1.7.  Pegs on the lid can be positioned in the channels of the bottom component, 

and are sized to fit also within the wells of a 96-well plate.  The bottom of the device 

directs flow (created by placing the device on a rocking table) around the pegs so that 

biofilms growing on the pegs experience a consistent amount of shear force.  Biofilms on 
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individual pegs can be removed as in the Robbins device, and analyzed for viable cell 

content.  Alternatively, the lid can be inserted in a microwell plate filled with varying 

concentrations of antibiotics, and biofilms on individual pins tested for antibiotic 

susceptibility in parallel.  In order to image the biofilms, however, pins must be broken 

off the lid and manipulated so that the biofilms can be imaged using confocal or scanning 

electron microscopy.  After evaluating the biofilm, there is no potential for reinstating 

biofilm formation on the same pin.   

 

Figure 1.7. Cross-sectional diagram (top) and top view (bottom) of a Calgary Biofilm Device.  The diagram 

illustrates the space allowance for growth media flow between the pegs and the bottom of the device.  As seen in 

top-down view, the pegs are arrayed in a 12x8 array compatible with a 96-well plate. Reproduced from [8].   

1.3.3.2 End-point Measurement Methods 

One of the most commonly used techniques for biofilm quantification is crystal 

violet staining [87-89].  Crystal violet is applied to a biofilm, where it binds to negatively 

charged exopolysaccharides and molecules on bacterial cell surfaces.  After rinsing 

excess dye from the biofilm, the bound stain is solubilized and is then quantified via the 

optical absorbance of crystal violet at 590 nm.  While this staining method is a standard 

biofilm metric, it can produce variable results as the stain penetration into the biofilm or 

degree of binding to the cell wall can be variable.  This can be addressed by removing the 
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biofilm from the reactor surface and thoroughly mixing it with the stain, sacrificing 

morphological information at the same time.   

As high resolution microscopic methods become more widely available, biofilms 

are commonly evaluated using confocal microscopy and scanning electron microscopy 

(SEM) [32, 90-93].  Confocal microscopy provides insight into the structures formed by 

fluorescent cells.  Fluorescence can be obtained by using a cell line modified to express a 

fluorescent protein either constitutively or upon the application of a stimulus.  However, 

the insertion of such plasmids can affect other aspects of the bacterial phenotype, 

potentially creating a biofilm that does not reflect what might be formed by the wild type 

strain of bacteria.  For example, three different strains of E. coli engineered for 

constitutive expression of green fluorescent protein (GFP) all exhibited decreased 

sensitivity to β-lactam antibiotics, but showed increased sensitivity to other antibiotics 

including tetracycline, ciprofloxacin, and vancomycin [94].  Alternatively, the biofilm 

can be fluorescently stained using a number of stains, often available in commercial kits 

such as the Filmtracer™ LIVE/DEAD® Biofilm Viability Kit (Invitrogen Corp.).  

Provided a fluorescently stained biofilm, confocal microscopy will generate images at 

different heights throughout the biofilm.  The series of images can be used to generate 

three dimensional representations of biofilm structures using software such as Imaris 

(Bitplane, Inc.) or Volocity (PerkinElmer, Inc.).  Quantitative information can be 

obtained through image analysis, often performed using COMSTAT, the software 

developed by Heydorn et al. to aid in standardization of biofilm quantification techniques 

[12, 95].  This software provides morphological data, such as average thickness, 
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substratum coverage, biomass, and roughness, all of which can be used to characterize 

biofilms.   

SEM provides more detailed information than confocal microscopy by virtue of 

its high resolution.  This technique can be used to evaluate the quality of the extracellular 

matrix and its interaction with cells within the biofilm [92, 93, 96].  Traditional SEM 

techniques involve supercritical drying and coating of the biofilm with metal for electron 

microscopy in a high vacuum environment, dehydrating the biofilm in the process and 

preventing further growth.  ESEM allows imaging of the biofilm in a hydrated state, 

providing information more representative of the biofilm in its natural state.  Electron 

microscopy is typically implemented as an endpoint measurement technique.  Factors 

contributing to the inability to use ESEM throughout growth include the performance of 

imaging at low temperatures close to freezing and the need to have the surface of the 

biofilm interact with the electron beam, preventing imaging through an enclosed biofilm 

reactor.  A comparison of images obtained using confocal microscopy, SEM, and 

environmental SEM (ESEM) is shown in Figure 1.8.   
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Figure 1.8. Images of a Bacillus subtilis biofilm obtained using A) Confocal microscopy C) Field emission SEM, 

similar to standard SEM apart from the use of a field emitter instead of a thermionic emitter in order to 

minimize distortion and obtain higher resolution B) ESEM performed at a chamber pressure of 4 Torr D) 

ESEM performed at 5 Torr.  Reproduced from [96].   

Biofilms may also be analyzed for chemical content using destructive processes to 

prepare samples for quantification of total protein content, total organic carbon content, 

and microarray analysis [14, 15, 90].  While these techniques provide multiple types of 

information about biofilms, they are all end point measurements, as the biofilm is 

destroyed in the analysis process.  Therefore, in order to obtain information 

corresponding to biofilms at different points in growth, several experiments must be 

performed.   

1.3.3.3 Noninvasive Measurement Methods 

As evident in the biofilm reactors presented above, one challenge in studying 

biofilms is observing biofilm properties in a non-destructive manner.  While not as 
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commonly used as the endpoint techniques described above, a number of methods which 

can be used on unlabeled biofilms at any point during growth have been developed; a 

review of such techniques has been presented by Janknecht and Melo [97].  One such 

method to evaluate biofilms is via their electrical properties, as the cells and EPS within 

biofilms serve as a dielectric material and thereby provide the biofilm an electrical 

impedance that can vary with time or with structure and composition of the biofilm.  The 

electrical signature of a biofilm can be assessed using methods such as electrochemical 

impedance spectroscopy or capacitive measurement techniques [97-100].   

Fiber optic sensors have also been used to evaluate biofilm growth noninvasively 

[97].  The amount of biofilm may be quantified by the observed turbidity in the biofilm 

reactor; this can be implemented as a differential measurement, with one turbidity 

measurement obtained at the biofilm, and one measurement at a point with no biofilm 

due to water jets physically removing biofilm from that location [101].  Alternatively, 

Tamachkiarow and Flemming evaluated the biofilm formed at one location in a brewery 

water pipeline by using a fiber optic probe to measure light scattered from a separate 

source, and monitoring the change over time [102].   

Using a similar principle as the fiber optic device of Tamachkiarow and 

Flemming, Bakke et al. performed a detailed study investigating biofilm optical density 

as a unique property by which biofilms may be characterized.  P. aeruginosa biofilms 

were formed in macroscale flow cells in the configuration shown in Figure 1.9.  Growth 

media was introduced into two parallel rectangular tubes to simultaneously grow biofilms 

over the surfaces of both tubes.  The optical density at 420 nm at selected points in time 
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was measured between points A and D as shown in Figure 1.9 using a fiber optic probe 

[14].   

 

Figure 1.9. Schematic of biofilm flow cell reactor used by Bakke et al.  Biofilms were formed in parallel 

rectangular tubes (1.0x3.0x300 mm), formed by inserting a water-filled capillary into a larger square tube in 

order to create a large surface area for biofilm formation. Optical density at 420 nm was measured between 

points A and D using a fiber optic probe.  Reproduced from [14]. 

The change in biofilm optical density from the baseline was compared to the 

change in optical thickness; while the two were not directly correlated, it was shown that 

as the biofilm grows, optical density increases.  The optical changes observed were 

hypothesized to be due to light scattered by cells within the biofilm, similar to turbidity 

measurements performed on bacterial suspensions in a spectrophotometer.  While the 

implementation of the flow cell precludes continuous optical measurements, this work 

demonstrated the viability of biofilm monitoring via optical absorbance.  The principle of 

detection may be applied to microscale systems integrated with inexpensive optical 

components (i.e. a light source and a photodetector) capable of continuous optical 

sensing.   

1.3.4 Microfluidics 

Microscale systems are able to address many of the disadvantages to the 

previously described macroscale biofilm models and measurement techniques.  The use 
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of microfluidics in particular allows for greater control of the fluidic environment and 

incorporation of microfabricated sensors or micropatterned growth substrates [103, 104].  

Additionally, larger platforms such as microwell plates require large sample sizes, often 

on the order of tens of microliters, while microfluidic systems may use reagent volumes 

on the order of nanoliters.  While large samples of bacteria are simple to obtain, as they 

are a self-renewing resource, it is often difficult or expensive to obtain large volumes of 

reagents such as antibodies or drugs under development.  Several microfluidic methods 

have been employed in biological applications such as electrophoresis, on chip PCR, and 

cell-free protein synthesis [105, 106].   

While the simplest microfluidic systems, single channels or chambers, are 

miniatures of existing macroscale platforms such as microwell plates or flow cells, 

complex fluid handling architectures can be integrated with arrays of channels or 

chambers in the epitome of a “lab on a chip”.  On-chip pumps can provide tunable flow 

of solutions throughout a device without the need for an external pump.  Integrated 

valves can direct this flow to designated locations on demand.  There are many 

configurations of valves, such as implementation of external pins or solenoids [107, 108] 

to compress a fluidic channel embedded in the flexible silicone polydimethylsiloxane 

(PDMS).  Integrating valves into PDMS itself and using a pressurized gas [108-111] to 

control the valve orientation is a popular valving scheme used in much of today’s 

microfluidic work.  These types of integrated valves are convenient for imaging the 

contents of the microfluidic channels, since using only an in-plane gas line to actuate the 

valves maintains an open line of sight for optimal characterization of channel contents via 

microscopy.   
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A unique feature of microfluidics is their ability to be integrated with sensors by 

virtue of compatible fabrication technologies.  A multitude of microfabricated sensing 

systems have been developed for biological applications using a variety of transduction 

mechanisms.  For example, impedimetric and capacitive sensors can measure changes in 

electrical properties imposed by deposition of molecules or cells on the surface of a 

microfabricated sensor [100].  Surface acoustic wave (SAW) sensors use a piezoelectric 

material to generate surface acoustic waves whose resonance properties change with 

mass deposition on the sensor [112, 113].  Cantilevers with surface functionalization 

layers will display altered mechanical properties, such as bending or resonance change, 

upon analyte binding to the surface.  The change in mechanical properties can be 

measured a variety of ways, such as with integrated piezoresistors [114] or with external 

interferometric readout [115].  These sensors, by nature of being batch microfabricated, 

offer the benefits of being small, inexpensive, and easily integrated with many other 

types of sensors to create a multimodal sensing platform.  Microscale sensing provides 

the added benefit of being as sensitive as macroscale methods, while maintaining fast 

response times.   

1.3.5 Microsystems for Biofilm Growth and Characterization 

While studies of biofilms and of microfluidics have existed for decades, recently 

the two fields have merged and spawned research providing new insight on the 

mechanical properties of biofilms [116, 117], roles of intercellular communication [32, 

111, 118-120], and development of antibiotic resistance [121] among other topics [122, 

123].  Highlights of published work from this body of research are summarized below in 

Table 1.1.   
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Table 1.1. Summary of highlights from published work utilizing microfluidic platforms for biofilm studies.  

Authors 

Cross-

Sectional 

Dimensions of 

Growth 

Reactor (width 

x height) 

Biofilm-

Forming 

Strain/s 

Growth 

Media 

Flow 

Rate/s 

Evaluation 

Method 
Notes 

Janakiraman 

et al. [32] 

600 µm x 250 

µm 

P. 

aeruginosa 

PA14 

M63 minimal 

media 

2.3,7.4, 

21 nL/s 

Confocal 

microscopy 

Flow rate variation, 

correlation to 

mathematical model 

Richter et al. 

[104]  

 ~1.5 mm x 20 

µm 

(Fungi) 
Candida 

albicans, 

Pichia 

pastoris  

Malt extract 

boullion, 

Worth broth 

0.12 

µL/min 

Impedance 

spectroscopy 

Grew fungal biofilms in 

microfluidic device with 

integrated electrodes for 

continuous, online 

measurement 

Kim et al. 

[111] 

600 µm x 200 

µm 

E. coli 

EHEC 
LB 2 µL/s 

Confocal 

microscopy 

Integrated mixer for 

generation of biofilm 

inhibitor concentrations 

Mosier et al. 

[117] 

2.45mm x 

100µm 

P. 

aeruginosa 

PAO1 

M9 + glucose 

+ CAA 
2 µL/min 

Atomic force 

microscopy 

(AFM), 

confocal 

microscopy 

Used open microfluidic 

channel for AFM 

measurement during 

biofilm growth 

Hong et al. 

[120] 

600 µm x 150 

µm 
E. coli hha, 

M9, 

LB+glucose 

2 µL/s, 

pulsed 

flow 

Confocal 

microscopy 

Introduced engineered 

E. coli hha “disperser” 

cells into established E. 

coli hha “colonizer” cell 

biofilm 

Kim et al. 

[121] 

300 µm x 40 

µm 

P. 

aeruginosa 

PAO1 

pMRP9-1 

LB 
0.1 

µL/min 

Fluorescence 

microscopy 

(non-

confocal) 

Generated antibiotic 

gradient to determine 

minimum biofilm 

eradication 

concentration 

Skolimowski 

et al. [123] 

300µm x 

150µm  

P. 

aeruginosa 

PAO1 

Fastidious 

anaerobe 

broth (FAB) + 

sodium citrate 

10 

µL/min 

Confocal 

microscopy 

Exposed biofilm to 

oxygen gradient while 

measuring oxygen 

concentration 

Kim et al. 

[124] 

1200 µm 

(diameter of 

well) x 100 µm 

E. coli BW 

25113 

Dulbecco’s 

modified 

Eagle medium 

(DMEM) 

(static) 
Confocal 

microscopy 

Co-culture of 

commensal bacterial 

biofilm with epithelial 

cells; observed 

interaction with E. coli 

EHEC injected from 

separate port controlled 

by valve actuation  

 

The majority of these studies utilized direct measurement of biofilm thickness and 

morphology using microscopy and image analysis, but did not demonstrate real-time 

monitoring of bacterial biofilm characteristics.  One study, by Richter et al., employed a 

microfluidic platform with integrated electrodes for impedance spectroscopy to evaluate 

fungal biofilm formation [104].  However, this method has not expanded to the 
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community of bacterial biofilm researchers.  Some of the studies leveraged properties of 

microfluidics to create environments more difficult to obtain with traditional reactors.  

Diffusive mixers have been incorporated within microfluidic platforms for biofilm 

formation so that two solutions, such as growth media and an antibiotic, may be injected 

and mixed to either one [121] or several desired concentrations [111, 120].  Kim et al. 

used controllable PDMS structures to isolate, then integrate cultures of epithelial cells 

and bacteria [124].  The same group also used integrated PDMS valves to control seeding 

of a device with bacteria introduced from a port separate from the port for growth media 

introduction [111, 120, 124]. 

Once the biofilm has formed in a microfluidic device, variability between devices 

still exists, as with macroscale biofilms [12, 125].  As a result, many studies performed 

on biofilm formation are conducted as demonstrations and rarely report more than three 

repetitions of an experiment.  One method of addressing device-to-device variation is 

performing multiple experiments simultaneously on parallel biofilms grown in separate 

channels of the same device [111, 120].  Although some work has investigated the 

reproducibility of biofilm morphology in flow conditions [12] and the correlation 

between biofilm optical density and carbon content [14], these investigations have been 

performed on biofilms formed in macroscale reactors.  While there is no variability 

difference between micro- and macroscale reactors at the cellular and molecular level of 

biofilm formation, microscale confinement alters the surrounding fluid dynamics and 

yields biofilms with compositions, morphologies, and variabilities that cannot be 

compared to those of biofilms in macroscale reactors.  There have been no reported 
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investigations of either morphology or optical density reproducibility in microfluidic 

biofilm reactors prior to the work performed in this dissertation. 

1.4 Structure of Dissertation 

The preceding chapter presented the motivation behind the work performed in this 

dissertation, along with background information to establish the context of the research 

work.  The following three chapters each address one of the three major accomplishments 

presented in Section 1.2.  Chapter 2 presents the development of a microfluidic platform 

featuring continuous optical measurement of biofilm growth, and a discussion of biofilm 

reproducibility and data analysis.  Chapter 3 covers the application of this platform 

toward evaluating inhibitory effects on biofilms by a new class of quorum sensing 

inhibitors.  Chapter 4 presents the design, fabrication, and experimental demonstration of 

a microfluidic device designed not only to multiplex biofilm experiments, but also to 

address variation between biofilm experiments.  Chapter 5 summarizes the work of the 

dissertation, and concludes with a discussion of future studies that can be performed as 

continuations or offshoots of the presented work. 
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2 Monitoring of Biofilm Formation in Microfluidics via 

Optical Density  

This chapter covers the use of optical density monitoring as a means of evaluating 

bacterial biofilms formed in microfluidics.  The development of the first microfluidic 

platform with optical density biofilm monitoring is described, including the device 

fabrication, biofilm growth, and data analysis.  Also included is a brief description of 

activities that have emerged from this preliminary development, namely work performed 

by Mr. Matthew Mosteller.  The development of the first-generation device has also been 

published in the Journal of Micromechanics and Microengineering [118], and the second-

generation device development has been reported in the Master’s thesis of Matthew 

Mosteller [126].   

2.1 First Generation Device 

The biofilm optical measurement platform presented below is the first 

demonstration of measuring optical density of biofilms formed in a microfluidic 

environment.  Biofilm optical density was continuously and non-invasively measured 

with a simplified experimental setup using off-the-shelf electrical components.  Biofilm 

optical properties were corroborated with biofilm morphological properties quantified 

using confocal microscopy and image analysis.  The platform was used to investigate the 

dependence of Escherichia coli biofilm formation on quorum sensing.  This investigation 

was achieved by comparing optical and morphological data between wild-type E. coli 

and E. coli incapable of quorum sensing molecule synthesis.  The repeatability of 

biofilms formed in the platform using the developed methodology was also evaluated, 

toward the end of using the system as a reliable drug evaluation platform.  
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2.1.1 Platform Overview 

As discussed in Section 1.3.4, microfluidics provide a number of advantages for 

biofilm research.  Batch fabrication and the ease of operating simultaneous experiments 

allow for high throughput studies.  The small volume serves as a tightly controllable 

microenvironment, and minimizes the amounts of reagents required for assays.   

While a number of measurement techniques are available for integration within 

microfluidics, optical density was used for biofilm evaluation in this work.  Optical 

density monitoring requires no labeling of bacteria with DNA-binding fluorophores or 

constitutive expression of GFP, preserving the viability and phenotype of the biofilm.  

Additionally, it can be performed in a continuous manner so that the real-time response 

of biofilms to stimuli can be observed.  Bakke et al. showed that as a biofilm grows, its 

optical density increases due to the increased amount of light scattered by the biofilm 

structure and constituent bacteria [14].  The change in optical density from the baseline 

biofilm condition (ΔOD) over time can be defined as  

ΔOD(t) = -log10(I(t)/I0), (1.1) 

where I(t) is the transmitted light intensity measured by the photodiode at a selected time 

t, and I0 is the baseline intensity measured after inoculation of the channel at the 

beginning of biofilm growth.   

The microfluidic platform for optical density measurement of biofilms consisted 

of a micropatterned base providing measurement windows, a molded PDMS microfluidic 

channel, photodiodes placed under measurement windows, and light emitting diodes 

(LEDs) providing incident light.  A cross-sectional schematic of the device indicating the 

optical implications is shown in Figure 2.1.   
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Figure 2.1. Schematic of PDMS microfluidic channel integrated with optical source and detector for optical 

density measurement of biofilms within the channel.  The LED provided incoherent light, which scatters off the 

surface of and within the biofilm.  Light that is transmitted through the pinhole in the chrome represents a 

combination of light that does not interact with the biofilm and light scattered from the biofilm.  Overall, less 

light sensed by the photodiode implies a greater amount of biofilm either impeding transmission or scattering 

light away from the pinhole.  Note: not to scale.  

As illustrated in Figure 2.1, LEDs flooded the device with incoherent light, illuminating 

the biofilm directly above patterned pinholes in the chrome as well as adjacent biofilm.  

Here, the incident red light was assumed to interact with the biofilm solely through 

scattering and reflection; since characteristic absorbance peaks have not been reported for 

biofilms, it was assumed that optical density at any visible wavelength would provide 

representative information on the biofilm state.  As DNA and proteins containing 

aromatic amino acids absorb light in the ultraviolet range at 260 and 280 nm respectively, 

the use of red LEDs with a peak emission wavelength of 660 nm was expected to 

minimize specific optical absorbance interactions with protein and DNA [127].   

The use of LED illumination has its own set of advantages and disadvantages.  

Incoherent light yields a low signal since much of the light generated by the LED source 

does not interact with the biofilm.  The biofilm itself acts as an additional source of 

scattering due to its heterogeneous composition of cells, EPS, and water.  While the 
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photodiode may detect light scattered from an area of biofilm not directly above the 

measurement window, sections of biofilm above the window may also not be completely 

represented due to scattering of light away from the photodiode.  The pinhole patterned in 

the chrome eliminates the majority of stray light from the LED, as well as some of the 

scattered light from the biofilm.   

2.1.2 Platform Fabrication, Assembly, and Interfacing 

2.1.2.1 Fabrication 

As mentioned above, the microfluidic channel itself was formed by molded 

PDMS placed on top of a transparent base serving as the channel floor.  The base was 

fabricated on a coverslip, providing a substrate that is both transparent and thin enough 

for high resolution inverted confocal microscopy of the biofilm.  A 200 nm layer of 

chrome was sputtered onto the coverslip and patterned into two 200 µm x 200 µm 

windows using contact photolithography and chrome etching (see Appendix A, Mask 

#1).  The windows were positioned 5 mm apart, with the first window 7.5 mm from the 

inlet.  The chrome served as an opaque barrier to light, while the two patterned areas in 

each channel served as observation windows through which the optical density of the 

biofilm was measured.   

The microfluidic channel was constructed of molded polydimethylsiloxane 

(PDMS).  The mold was fabricated by patterning 100 µm-thick Microchem SU8-50 on 

silicon, using contact photolithography (Appendix A, Mask #2).  PDMS (Dow Corning, 

Sylgard 184) was prepared in a 10:1 ratio of base to curing agent, poured onto the mold, 

and cured at 80 ºC for 20 minutes.  The microfluidic channel was 500 µm wide, 100 µm 
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in height, and 2 cm long.  Ports for interfacing the microfluidic channel to Tygon tubing 

were punched into the PDMS using a 2 mm dermatological punch.   

The PDMS was reversibly bonded to the un-patterned side of the coverslip by 

soaking the side of the PDMS to be bonded in methanol for 1 minute, then aligning and 

placing the PDMS onto the chip.  This bonding technique was found to be most effective 

when the PDMS was placed on the un-patterned side of the coverslip, as opposed to the 

chrome-coated side.  Reversible bonding allowed for disassembly, cleaning, and reuse of 

the chip after it has been used for a biofilm formation experiment.  In the development of 

this measurement platform and technique, reusability was a critical factor as many 

experiments were performed in order to characterize the system.  While fabrication of the 

patterned coverslip and PDMS microfluidic channel were not prohibitively difficult, 

researcher time and resources were conserved by avoiding fabricating additional 

platforms through reuse.   

2.1.2.2 Fluidic Interfaces 

Following assembly, the platform was affixed to a glass slide for more robust 

handling, and the slide was aligned so that the observation windows in the coverslip were 

positioned over two external photodiodes sensitive to visible light.  One end of the 

0.38 mm ID Tygon tubing (Cole Parmer #EW­95609­14) was connected to a 

1/16” barbed tubing connector (Cole Parmer #EW­06365­15) via a short section of 

1/16” ID tubing (McMaster-Carr #5894K11) that snugly fit both the narrow tubing and 

the barbed tubing connector.  Epoxy was applied to all joints to guarantee leak-free 

connections for maintenance of continuous and stable flow of growth media throughout a 

biofilm formation experiment.  Connectors were inserted into the ports in the PDMS 
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layer, so that one tube was connected to a syringe pump and one tube was inserted in a 

reservoir to provide flow of growth media, bacteria, or fluorescent stain.  Epoxy was 

again applied at the connector-PDMS interface to ensure a leak-free connection.  The 

entire assembly was placed inside an incubator at 37 °C.  A schematic of the arrayed 

microfluidic chips is shown in Figure 2.2, and photographs of an individual chip and 

platform setup are shown in Figure 2.3.  

 

Figure 2.2. Schematic of microfluidic flow cell in which biofilms were formed.  The width, length, and depth of 

the straight microfluidic channel used in these studies were 500 µm, 2 cm, and 100 µm, respectively,  A syringe 

pump operating in withdrawal mode provided flow throughout the channel of suspended bacteria, growth 

media, or fluorescent dye from a reservoir.   

 

Figure 2.3. a) Photograph of assembled microfluidic device with fluidic connections b) Photograph of 

microfluidic device (inset) integrated with fluidic components, and positioned over photodiodes and under 

LEDs. 
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2.1.2.3 Optical Components 

Optical density measurement of light transmitted through the microfluidic channel 

and its contents required a light source and a photodector.  In this work, an array of high 

intensity red LEDs (Lumex SSL-LX5093SRC/E), the source of visible light for optical 

density measurement, was aligned to an array of microfluidic platforms as shown in 

Figure 2.3b.  The LEDs were connected to a 5 V voltage regulator and a dedicated power 

supply (Appendix B).   

Two off-the-shelf photodiodes (Sharp BS520E0F) for measuring light transmitted 

through the microfluidic channel were placed under each microfluidic platform, with one 

photodiode centered under each window.  As photodiodes transduce the intensity of 

incident light into a current, a transimpedance amplifier was used to translate the current 

output of each photodiode into a voltage (Appendix B).  Differential voltages for each 

photodiode were then fed to a data acquisition (DAQ) card (National Instruments USB-

6221) with LabVIEW control of inputs and outputs.  Proper alignment was verified by 

monitoring the photodiode output during alignment.   

2.1.2.4 Multiplexed Photodiode Output Measurements 

In order to obtain sufficient data for statistical analysis to confirm observed trends 

in biofilm growth, it was necessary to perform a large number of experiments.  A custom 

electrical logic circuit was developed to streamline simultaneous testing of up to nine 

devices.  Evaluation of one photodiode output required differential measurement of two 

analog voltage inputs by the DAQ; as each device had two photodiode measurement 

windows, 18 analog inputs were required in order to measure nine devices.  As the USB-

6221 had only 16 analog inputs, a separate multiplexing circuit was constructed.  As 
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shown below in Figure 2.4, an off-the-shelf, 4-channel differential multiplexer (Fairchild 

Semiconductor MM74HC4052) was used to reduce four photodiode outputs to one 

(Appendix B).  A digital counter was created in LabVIEW and applied to the multiplexer 

via the digital output pins of the DAQ.  The LabVIEW program was configured to record 

a time stamp, the state of the counter, and the photodiode outputs averaged over 5 

seconds.  The LabVIEW files created were processed by a MATLAB program (Appendix 

C) so that the multiplexed signal could be divided between the measured photodiodes 

according to the counter state.   

 

Figure 2.4. Schematic of multiplexer integration with photodiode measurement.  A digital counter generated by 

LabVIEW controls the multiplexer state, and determines which photodiode signal is reflected in the multiplexer 

output.  Both the multiplexer output and the state of the counter over time are exported to MATLAB, where the 

photodiode outputs are separated. 

Key considerations with the system, especially when performing many parallel 

measurements, are electrical noise and interference.  A common phenomenon observed 

with multiple analog inputs on a multiplexed-sampling DAQ card is “ghosting”, where 

changes in one input are observed in the adjacent input due to accumulation and transfer 

of charge between channels.  Measures were taken to prevent ghosting as well as 

interference between photodiode outputs at the hardware level.  “Dummy” channels were 

used between measurement channels on the DAQ card, so that two photodiode inputs 

were never read one after the other.  Implementing the differential multiplexer also 

created more channels free for use as dummy channels.   
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2.1.3 Experimental Methods 

2.1.3.1 Strains Used 

E. coli W3110 served as the standard for biofilm formation.  To probe the role of 

quorum sensing in optically detectable biofilm formation in microfluidics, a quorum 

sensing-null W3110 mutant, MDAI2 [128], was used.  MDAI2 does not express LuxS, an 

enzyme responsible for the synthesis of AI-2, the primary signaling molecule used by 

E. coli.  Restoration of quorum sensing capabilities was evaluated by adding 30 µM AI-2 

to MDAI2 cultures; growth media was refreshed every 12 hours to ensure viability of the 

AI-2 molecules.  Bacterial cultures were grown overnight, then diluted to the desired 

OD600.  All cultures were grown in Luria Bertani (LB) growth media. 

2.1.3.2 Validation of Optical Response of the System 

The photodiode sensitivity was characterized by filling the microfluidic channel 

with bacterial suspensions of a known OD600 measured with a standard spectrophotometer 

(Beckman Coulter, Inc.).  E. coli W3110 suspensions were grown as described in 

Section 2.2.2.1, and prepared in dilutions with OD600 values of approximately 0.1, 0.25, 

0.5, 1.0, 2,0, 3.0, and 6.  The microfluidic channel was disinfected with a flow of 70% 

ethyl alcohol.  An optical density for each suspension was obtained using the developed 

platform by first introducing sterile LB media into the channel as a blank and measuring 

the photodiode response over 5 minutes (without flow in the channel).  After rinsing the 

channel with deionized (DI) water, the suspension was injected into the channel.  The 

photodiode response was measured over 5 minutes, followed by rinsing the channel with 

DI water in preparation for the next sample.  Optical density values obtained with the 
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microfluidic platform were calculated using the average responses over the 5 minute 

measurement time period, and averaged between photodiodes.   

2.1.3.3 Biofilm Growth 

Prior to channel inoculation with bacteria for biofilm growth, the channel was 

disinfected with a flow of 70% ethyl alcohol. The bacterial suspension, diluted to an 

OD600 of 0.25, was suctioned into the assembled microfluidic platform.  The inoculum 

was incubated in the channel for 2 hours to allow bacterial adhesion to the substrate.  The 

channel was rinsed with LB growth media for 15 minutes at a flow rate of 10 µL/hr, 

corresponding to an average velocity of 0.06 mm/s, to remove non-adherent cells.  The 

platform was continuously operated at 10 µL/hr over the biofilm growth period. 

The initial optical density of the biofilm was measured after rinsing, using the 

average of the two photodiode outputs over a period of 15 minutes.  The photodiode 

outputs were then continuously monitored using the DAQ card and recorded using NI 

LabVIEW.  Although there were two photodiodes and two measurement windows for 

each microfluidic channel, the outputs of the photodiodes were typically within 10% of 

each other; therefore, the average of the two photodiode outputs in each channel was used 

in all optical density calculations. 

2.1.3.4 Confocal Microscopy and Image Analysis 

While optical density is one characteristic of a biofilm, many biofilm studies 

evaluate morphological characteristics of the structure formed using microscopy, as 

discussed in Section 1.3.3.2.  In this work, confocal microscopy was used to obtain 

morphological data that could be compared to optical density data.  At timepoints 

selected for microscopy, flow of growth media over the biofilm was ceased.  The channel 
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was rinsed with DI water then treated with a Live/Dead Bacterial Labeling Kit 

(Invitrogen # L7012).  The dye was fixed by flowing 3% paraformaldehyde into the 

channel.  Labeled samples were imaged using a confocal microscope (Zeiss LSM 710).  

Z-stacks were analyzed using COMSTAT to obtain morphological properties of the 

biofilm [8].  

2.1.3.5 Calculation of Optical Density Changes 

The change in optical density from the baseline biofilm condition was calculated 

using Equation 1.  As mentioned above, the transmitted intensity I(t) was continuously 

measured by the photodiodes, and the baseline intensity (I0) was obtained by averaging 

photodiode outputs over the 15 minute period after rinsing non-adherent bacteria.  As the 

type of photodiode used has its own conversion function between output current and 

incident illuminance, the transfer function was estimated from the data sheet and is 

reflected in Appendix C.  The photodiode output currents were derived from the voltage 

using the resistor values used in the transimpedance amplifiers, also reflected in the 

calculations in Appendix C.   

2.1.3.6 Data Analysis 

Morphological and optical data were both reported as the average of values 

obtained at each of the two windows in a microfluidic channel.  In some experiments, as 

detailed below, net changes in optical density and thickness were compared between 

groups at selected time points to evaluate significant differences.  Since changes in 

optical density were continuously measured, 30 minute averages centered around the time 

point of interest were used as data points for comparison.  Changes from the baseline 
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optical density and average thickness values were compared using Student’s t-test.  

JMP® statistical analysis software was used for all statistical calculations. 

2.1.4 Results and Discussion 

2.1.4.1 System Characterization 

The optical response of the system was characterized using bacterial suspensions 

with OD600 values obtained with a standard spectrophotometer.  A graph of the data and a 

linear fit thereof are presented below in Figure 2.5.   

 

Figure 2.5. Measured changes in optical density of known bacterial suspensions using microfluidic platform with 

photodiodes.  The photodiode output is linearly correlated to turbidity measured with a spectrophotometer.   

There was a strong linear relationship (R
2
 = 0.98) between the actual bacterial 

density (OD600) and the optical density changes measured by the microfluidic platform.  

The data also highlighted key differences between the platform and a spectrophotometer.  

First, the change in optical density measured by the photodiodes maintained a linear 

relationship at high bacterial densities; standard spectrophotometers using traditional 

cuvettes with a 1 cm pathlength are known to respond nonlinearly at high OD600 values, 

necessitating dilution of the sample to a measurable concentration (OD600 < 0.5) and 

calculating the original optical density of the solution from that of the dilution.  The 
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nonlinearity seen with high turbidity solutions can be attributed to the low light 

transmission through particularly dense suspensions, as noise will dominate a low 

photodetector signal.  A smaller length scale will minimize the amount of light scattering 

through a dense suspension, fundamentally generating a dilution without manipulating 

the sample.  Smaller length scales also typically create a higher limit of detection; while 

the system appeared capable of distinguishing between OD600 values of 0.1 and 0.25, 

values less than 0.1 were not tested, and the detection limit of the system was not 

explored.  For the purposes of biofilm growth, a linear response at higher optical densities 

is more useful than the ability to measure very low concentrations of bacteria, as biofilms 

form quickly and involve higher concentrations of bacteria.  Additional factors to 

consider are the fundamental differences between the custom microfluidic platform and a 

spectrophotometer.  In addition to the different optical pathlengths, the LED array 

produces a wide range of optical wavelengths (a band of spectrum typically greater than 

20 nm wide), while the laser in a spectrophotometer produces a very narrow spectrum 

(typically less than 3 nm).  Furthermore, when measuring the optical density of a biofilm 

formed in the custom microfluidic platform, not only does the number of bacteria 

contribute to optical density, but incident light is also scattered by the biofilm-media 

interface.  While there are a number of differences between the microfluidic platform and 

a traditional spectrophotometer that impede direct comparison between the two methods, 

it is useful to have an approximate correlation between the techniques for comparing 

results from the microfluidic platform to those from standard biofilm studies.  

Additionally, such a correlation enables inexpensive, commercial off-the-shelf optical 

components to replace a more expensive spectrophotometer for optical density 
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measurement.  While a spectrophotometer is expected to have a higher degree of 

sensitivity due to its lower noise level, the LED and photodiodes are simple to implement 

and can be integrated with a variety of form factors beyond cuvettes and microwell 

plates.   

Small differences were evident in the outputs of two photodiodes positioned at 

different locations within the microfluidic channel; an example of this is provided in 

Figure 2.6a.  In this case, the output at the first window, closest to the inlet, showed more 

aberrations than the output of the second window.  In other cases, such differences 

between photodiode outputs were not as apparent, as shown in Figure 2.6b, indicating 

that, at least in this work, firm conclusions with regard to repeatability in changes in 

biofilm properties along the length of the channel cannot be drawn. 

 

Figure 2.6. Raw optical density change measurements corresponding to the output of the two photodiodes 

positioned under one microfluidic channel.  ‘Window 1’ is closest to the channel inlet.  Data correspond to two 

separate E. coli W3110 experiments.  a) Outputs differ along the length of the channel, as seen difference in 

photodiode outputs between 5 and 12 hours; the greatest difference between outputs is 31%.  b) Outputs show 

almost identical behavior with less than a 10% difference between measurement locations. 

When evaluating the average output of the two photodiodes, it was observed that 

the biofilm optical density exhibits unpredictable sharp increases and decreases, as shown 

in Figure 2.7a.  These ‘spikes’ reflect optical density changes faster than the doubling rate 
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of E. coli (< 10 minutes versus 20 minutes), and therefore cannot be attributed simply to 

natural bacterial growth.  It was hypothesized that this was due to both the non-uniform 

nature of the biofilms grown in the channel and the additional dynamics provided by the 

flow environment.  If a section of biofilm is sheared off, it can either reattach elsewhere 

along the channel, or exit the flow cell with waste growth media.  The location from 

which it was sheared off will exhibit a sharp decrease in biomass, and if redeposited, the 

location to which it adheres will exhibit a sharp increase in biomass.  If both detachment 

and reattachment locations were positioned over observation windows, there would be no 

observed change in average biofilm optical density, as the optical densities were averaged 

between photodiodes and over a period of 5 seconds.  However, if only one of these 

locations is positioned over a window, either a sharp increase or decrease in optical 

density will be observed, dependent on if the window observed attachment or 

detachment, respectively. 

a) b) 

 

Figure 2.7. Data corresponding to E. coli W3110 and MDAI2 biofilms formed in two microfluidic platforms.  a) 

Raw optical density change measurements, illustrating unpredictable “spikes” in observed optical density b) 

Data from (a) smoothed using quadratic fits (Appendix C). 

In order to obtain a representative picture of the biofilm as a whole, as a biofilm is 

by definition a bulk phenomenon, data was either smoothed using quadratic fits (Figure 

2.7b, Appendix C), or evaluated only at the endpoint of growth.  While much data is lost, 
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elimination of this noise provides an adequate representation of the overall biofilm.  

Further analysis of the raw data, combined with other evaluation methods such as 

continuous microscopy, can further elucidate the roots of the observed fluctuations.  

2.1.4.2 Biofilm Sensitivity to Shear Stress 

One of the unique capabilities of this platform is real-time observation of the 

biofilm state without the bulk and expense of confocal microscopy.  This capacity was 

demonstrated through an experiment evaluating biofilms during exposure to shear stress.  

As biofilm thickness depends on the shear stress experienced by the biofilm (see Section 

1.3.1.2), the response of the biofilm to shear stress is reflected in its overall biomass, and 

consequently, its optical density.  

Biofilms were prepared according to the procedures of Section 2.1.2.3, using 

E. coli strains W3110 and MDAI2, and grown for 48 hours.  At this point in time, the 

flow rate was increased to 400 µL/hr for 30 minutes, then returned to the initial flow rate 

of 10 µL/hr.  Results of the high shear rinsing studies are shown in Figure 2.8.   

 

Figure 2.8. Rinsing of E. coli W3110 and MDAI2 biofilms measured by the change in optical density.  Data 

indicate the role of quorum sensing in physical robustness of biofilms.   

400 µL/hr 10 µL/hr 10 µL/hr 
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The continuous optical density measurements showed the biofilm sensitivity to 

shear imposed on the biofilms, emphasizing the real-time observation capability of the 

platform and measurement system.  Using two different strains of bacteria, one wild-type 

(E. coli W3110) and one deficient in quorum sensing (E. coli MDAI2), the role of 

quorum sensing in the mechanical stability of the resulting biofilm was highlighted.  The 

wild-type biofilm exhibited little change in optical density after rinsing, and during the 

rinsing period, fluctuations of less than 10% with respect to the initial optical density 

were observed.  In contrast, the E. coli MDAI2 biofilm exhibited sharp and erratic 

changes during the rinsing period and a larger overall change in optical density after 

rinsing as compared to before rinsing.  This is most likely due to the lack of 

exopolysaccharide production in quorum sensing-deficient strains of bacteria [5, 129]; 

the absence of a sufficient extracellular matrix may reduce biofilm cohesion and render 

the structure more susceptible to external forces, such as those imposed by fluid shear in 

the microfluidic channel.   

2.1.4.3 Evaluation of Biofilm Optical Density over Repeated Experiments 

Building upon the capacity of the developed platform for optical observation of 

biofilms, a set of more extensive studies of the optical density of biofilms was performed.  

Characterization of biofilm optical density growth curves and correlation of optical 

properties to morphological properties of the biofilm confirmed the applicability of the 

platform for scientific biofilm studies.  Here, the dependence of E. coli biofilm formation 

on quorum sensing was explored using the microfluidic platform for optical density 

monitoring.   
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In each experiment, three platforms were arrayed in parallel; one was inoculated 

with wild-type E. coli W3110, and two with MDAI2.  While LB media was flowed 

through all of the channels during growth, one of the channels inoculated with MDAI2 

was exposed to LB media with 30 µM AI-2.  During the operation of an experiment, the 

growth medium was refreshed every 12 hours for all biofilms to ensure viability of the 

AI-2 molecules and to maintain parallelism between concurrent experiments.  The optical 

density of biofilms contained in all three channels was continuously measured.  The three 

types of biofilms were grown for time periods of 12, 24, 36, 48, 60, or 72 hours, with 

n = 3 for each type of biofilm and for each growth period.  The biofilm optical density 

states at the end of each growth period were compared using a 30 minute average to 

provide a single value for comparison.   

The averages of optical density results from repeated experiments are shown in 

Figure 2.9.  The optical absorbance of the biofilms was shown to vary with respect to the 

degree of intercellular communication.  Wild-type biofilms exhibited an initial period of 

rapid growth within the first 12 hours of flow, while MDAI2 biofilms grown with and 

without extracellular AI-2 showed more gradual increases in optical density.  The 

different types of biofilms exhibited different overall changes in optical density; wild-

type biofilms were the most optically dense, while luxS-null biofilms were the least 

optically dense.  AI-2 addition appears to restore optical density to MDAI2 biofilms; this 

is reflected by the compiled data shown in Figure 2.9, where the mean optical density 

change of MDAI2 biofilms grown with AI-2 was approximately equal to wild-type 

biofilm optical density changes after 48 hours.  Restoration of the biofilm optical density 

phenotype by addition of AI-2 confirms the dependence of the biofilm formation on AI-2 
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within the system.  Optical density for all three types of biofilms observed also appeared 

to continue to increase at 72 hours and did not approach a steady-state value. 

 

Figure 2.9. Compiled data for the change from baseline optical density for each type of E. coli biofilm formed. 

n = 3 for each data point, presented as the average of all trials. Error bars correspond to one standard deviation 

of the trials. 

When evaluating the statistical significance of the differences between time points 

within one strain and between types of biofilms, the magnitude of optical changes over 

growth was not consistent between experiments, reflected in the overlapping error bars in 

Figure 2.9.  However, the relative differences between strains were more consistent 

between experiments.  Wild-type biofilms were consistently the most optically dense, 

MDAI2 biofilms were the least dense, and by adding AI-2 to the latter, density could be 

restored.  The percent difference between wild-type biofilms and MDAI2 biofilms grown 

with or without AI-2 was expressed as 

                  
       

   
, 

using the optical density change of the wild-type biofilm (ODw) as a reference for the 

optical density change of MDAI2 grown with or without AI-2 (ODx ).  Comparison of the 



50 

 

percent difference from wild-type biofilms yielded more statistically significant 

differences between biofilm types (Figure 2.10, Table 2.1). 

 

Figure 2.10. Compiled data for the percent difference from wild-type (W3110) biofilms for MDAI2 biofilms 

(blue circles) and for MDAI2 biofilms grown with AI-2 (red squares).  Error bars represent one standard 

deviation of the averaged data. 

Table 2.1. Table of p-values obtained through Student’s t-test for comparison of optical density change 

magnitude and for comparison of percent difference in optical density change between E. coli biofilm groups. 

 12 h 24 h 36 h 48 h 60 h 72 h 

W3110 versus MDAI2 0.0076 0.0129 0.0362 0.0108 0.0224 0.0510 

W3110 versus MDAI2 + AI-2 0.0547 0.1383 0.8478 0.8833 0.9043 0.8713 

MDAI2+ AI-2 versus MDAI2 0.1695 0.1247 0.0474 0.0129 0.0264 0.0586 

% Difference W3110/MDAI2 versus  

% difference W3110/MDAI2+AI-2 

0.4067 0.1755 0.0084 0.0017 0.0146 0.0768 

Differences are considered significant for p < 0.05; comparison of strains via percent difference from wild-type 

biofilms yields more statistically significant differences. 

2.1.4.4 Evaluation of Biofilm Morphology over Repeated Experiments 

In order to compare optical density studies to traditional morphological studies, 

the physical nature of the biofilms formed in the microfluidic platform were interpreted 

through confocal imaging and analysis of image stacks.  Using the output of COMSTAT, 

the mean biofilm thickness and roughness coefficient were also averaged between sets, 

shown in Figure 2.11a and Figure 2.11b respectively. 



51 

 

Over the windows imaged using confocal microscopy, the variances in thickness 

differed to a large extent.  In some cases where a thick biofilm did not cover the majority 

of the window, the standard deviation of the thickness could be as much as 100% of the 

average biofilm thickness.  An alternative metric for examining the spatial non-

uniformity of the biofilms formed is the roughness coefficient, as defined by Heydorn et 

al. and evaluated using COMSTAT [95].  This parameter is a dimensionless number 

representative of the percent variation in biofilm thickness.  As roughness coefficient 

trends within one channel were variable, as with the optical density, the values for all 

windows measured for one type of biofilm at one time point were averaged.  Results, 

shown in Figure 2.11b, indicated a large degree of variability between channels and a 

lack of significant differences between types of biofilms.  The results suggest that biofilm 

roughness has a minimal dependence on bacterial quorum sensing activity, although 

wild-type E. coli biofilms appeared to have average roughness values lower than those of 

the other two types of biofilms investigated, especially after 60 hours of growth.  

Additionally, the variation in the roughness coefficient, indicated by the error bars in 

Figure 2.11b, was smallest for all three groups at 72 hours.  This may be indicative of an 

approach to a steady-state biofilm as the biofilm structure settles to a smooth surface that 

will not be as prone to sloughing. 

The average thickness of the biofilms also showed the same overall trend as the 

changes in biofilm optical density (Figure 2.11a).  As with the trends in optical density, 

wild-type biofilms were the thickest, MDAI2 biofilms were the thinnest, and addition of 

AI-2 to the latter produced MDAI2 biofilms with thickness approaching that of wild-type 

biofilms.  The thicknesses of all the biofilms increased over time, with the most 



52 

 

significant increases occurring between 36 and 48 hours in W3110 biofilms and MDAI2 

biofilms grown with AI-2.  Thicknesses of biofilms (Figure 2.11a, Table 2.2) showed less 

irreproducibility over different experiments than the optical measurements (Figure 2.9) 

and roughness coefficient calculations (Figure 2.11b) for the same biofilms. 

 

Figure 2.11. Compiled morphological data, including a) average thickness, and b) nondimensional roughness 

coefficient, for each type of biofilm formed. n = 3 for each data point, presented as the average of all trials. 

Error bars represent one standard deviation of the averaged data. 

Table 2.2. Table of p-values obtained through Student’s t-test for comparison of thickness between E. coli 

biofilm groups. 

 12 h 24 h 36 h 48 h 60 h 72 h 

W3110 versus MDAI2 0.0271 0.0004 0.0010 0.0003 0.0008 0.0030 

W3110 versus MDAI2 + AI-2 0.0868 0.0024 0.0015 0.0088 0.0040 0.0380 

MDAI2+ AI-2 versus MDAI2 0.4218 0.0973 0.6558 0.0108 0.1456 0.0748 

Differences are considered significant for p < 0.05; comparison of strains via percent difference from wild-type 

biofilms yields more statistically significant differences. 

Both W3110 and MDAI2 formed optically detectable biofilms.  While MDAI2 is 

incapable of synthesizing AI-2 due to the lack of luxS expression, formation of biofilms 

by MDAI2 still occurred, albeit not as efficiently as formation of wild-type biofilms.  

This agreed with the work of other groups, who have found that while biofilm formation 

may be encouraged by quorum sensing, in the absence of quorum sensing bacteria may 

still form thin, sparse biofilms [56]. 
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Addition of AI-2 appeared to restore optical density and thickness to MDAI2 

biofilms so that these characteristics approached those of the wild-type biofilms.  

However, the onset of the restoration was not immediate, as shown in the optical data.  It 

is possible that the concentration of AI-2 used in these studies (30 µM) combined with 

the flow properties in microfluidics may not be sufficient to immediately restore wild-

type behavior.  While 20 µM of extracellular AI-2 has produced quorum sensing activity 

in suspended cultures of MDAI2 [130], the dynamics of the microfluidic reactor may 

require higher concentrations of AI-2 in the growth media. 

While the concentration of AI-2 throughout the media is assumed to be uniform at 

the channel inlet, laminar flow around the biofilm structure and bacterial uptake of AI-2 

will produce a non-uniform concentration profile throughout the channel.  Unlike the 

suspensions of MDAI2, the physical structure of the biofilm will also impede transport of 

AI-2 through the biofilm to bacteria at the substrate interface.  Therefore, AI-2 

concentrations that may restore quorum sensing activity in a suspended culture of 

MDAI2 may not produce the same activity in an MDAI2 biofilm formed in a 

microfluidic flow environment.  However, the microfluidic device is more clinically 

relevant than bacterial suspensions – not only can biofilms be formed in microfluidics, 

but biofilms can be grown with a continuous supply of fresh nutrients, similar to in vivo 

environments with flow of fluids containing a variety of metabolites.  In microscale 

environments within both microfluidic and in vivo spaces, the dynamics of flow and 

exposure of the biofilm to molecules within the flow are expected to vary significantly 

with dimensions of the growth space.  For future studies using AI-2 or pharmaceutical 
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agents for treating biofilms, the dimensions of the microfluidic reactor must be accounted 

for when translating work between studies.   

The changes in biofilm optical density from recorded baseline values for all three 

types of biofilms investigated appeared to continue increasing steadily at the end of the 

selected growth period of 72 hours.  Conversely, biofilm thicknesses did not appear to 

exhibit any distinct increase toward the end of the growth period; while longer 

experiments must be performed in order to confirm or reject the achievement of steady-

state thickness in biofilms by 72 hours, it was inferred that the optical density of a biofilm 

is a unique characteristic, independent of its thickness.  While biofilms may achieve a 

steady-state thickness, the structure may continue to reorganize itself over time, 

contributing to increased optical density.  These results correspond with those of Bakke et 

al. at the macroscale, in that a morphological steady state was achieved more quickly than 

an optical steady state [14].  

Biofilm thickness did not approach a distinct steady state within the allotted 

72 hour time period.  However, with a longer experimental duration, it is expected that a 

steady-state thickness would be reached.  The attainment of a steady state is expected 

given the bacterial growth behaviors observed in macroscale settings.  When bacteria are 

grown in any type of reactor, the growth rate is dependent on nutrient availability.  In 

suspension or in static reactors such as a microwell plate, the amount of growth media 

and nutrients is fixed; therefore, as metabolites are depleted, the bacteria will reach a 

stationary phase and, given further time, will begin to die [131].  In a flow reactor, there 

is a continuous supply of fresh nutrients, encouraging continuous and efficient bacterial 

growth.  However, as the biofilm forms on the bottom of the channel, the availability of 
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nutrients to the bacteria at the substratum becomes limited by diffusion through the upper 

portion of the biofilm, causing the growth rate to slow and eventually approach a steady 

state as a balance is achieved between thickness and nutrient diffusion.  Biofilm thickness 

is also limited by the shear stress imposed on the biofilm surface, since high amounts of 

shear will cause bacterial shedding.  This limiting effect is particularly pronounced in a 

microfluidic environment such as that constructed in this work; the small dimensions of 

the channel (100 µm deep) create an environment where as the biofilm grows to 

thicknesses of tens of microns, the biofilm itself affects the flow by decreasing the 

effective diameter of the microfluidic channel and thereby increasing shear stress.  

Through a negative feedback system, the bacteria will consume nutrients and divide in 

order to sustain the population but will maintain a thickness small enough for unimpeded 

flow through the channel (i.e. the channel does not become clogged with biofilm) [32].  

The combination of biological and physical phenomena is expected to produce the 

eventual steady-state thickness suggested by the data in Figure 2.11a. 

While additional experiments with longer time durations will clarify the dynamics 

of biofilm formation, it must also be acknowledged that the earlier time points are of 

particular interest.  In terms of the ultimate application of this platform for evaluation of 

drugs for biofilm prevention and eradication, focusing on early biofilm growth is of 

particular importance for prevention of serious biofilm infection.  Therefore, while it is of 

scientific interest to continue biofilm growth experiments for longer periods of time, such 

as the weeks-long experiments performed by Bakke et al. [14], if this platform were to be 

applied toward drug discovery and evaluation, long-term experiments are not essential. 
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2.1.4.5 Evaluation of the relationship between biofilm thickness and optical density 

Although it appeared that the relationship between biofilm morphology and 

optical density is not direct, especially considering the differing time scales of steady-

state approach, the likelihood of a relationship between the two was statistically 

investigated.  A linear correlation between the values for endpoint optical density and 

biofilm thickness (Figure 2.9 and Figure 2.11) yielded a correlation coefficient of 0.78.  

Considering the large number data points used to obtain this correlation (n = 54), this 

degree of correlation is significant and implies a strong association between the two 

variables.  While thickness and optical density are expected to be independent, a linear fit 

was generated using optical density as an independent variable and biofilm thickness at 

that time point as a dependent variable.  As shown in Figure 2.12, a linear fit of the 

thickness with respect to change in optical density yielded an r-squared of 0.9; due to the 

clustering of data at low optical density and thickness values, an intercept was imposed 

on the data, allowing for an improved fit.  Note that while the fit is improved, it is not 

directly physically relevant; here, at the onset of the experiment the thickness is predicted 

to be 6 µm.  The actual average thickness is expected to be much lower (< 1 µm), as the 

inoculum OD600 of 0.25 will not cover the entire floor of the microfluidic channel, and 

each cell will be less than 2 µm in height.  Further experimentation, especially at shorter 

time points, is expected to improve this fit.  
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Figure 2.12.  Least-squares regression fit of biofilm thickness (t) versus change in optical density (OD), compiled 

for all biofilms at all timepoints observed. R2
 = 0.90198. 

The uncertainty of the change in optical density measurement is dependent on a 

number of factors, including errors introduced by the inherent properties of the 

measurement equipment, such as the photodiodes (dark current), data acquisition unit 

(analog input accuracy), and the measurement circuitry (offset introduced by the 

transimpedance amplifier).  As an example, data were used from the endpoint of an 

immature biofilm with a final optical density change of 0.01; this represents the minimum 

relevant change in optical density to be measured and is also the point where the most 

uncertainty will be introduced.  From the components of error and using the assumed 

biofilm, the experimental uncertainty evaluated as outlined in [132] was approximately 

0.06% of the overall change in optical density.  Note that this uncertainty does not 

account for natural variations in bacterial systems, and therefore the large variations in 

the data obtained in this work are most likely due to biological fluctuations.  In order to 

minimize this uncertainty, it would be ideal to perform more repetitions of the 

experiments to determine the trends in optical density and morphological changes during 

biofilm formation; this would additionally aid in the refinement of a model of biofilm 

optical density versus thickness. 
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Inclusion of other variables in the optical density model, such as substratum 

coverage and biomass, may produce an improved fit.  However, the objective is 

ultimately to utilize measurement of changes in optical density as a substitute for 

microscopic measurement of biofilm bulk properties.  The refinement of the simplified 

thickness versus optical density model eliminates the need for corroboration of optical 

density results using imaging to obtain morphological properties and would be 

instrumental in development of a completely integrated microfluidic platform for real-

time biofilm monitoring. 

2.1.5 Conclusion 

This section described the development of the first microfluidic platform utilizing 

optical density monitoring to assess biofilm formation.  Optical density measurement is 

continuous and noninvasive, capable of providing real-time information on biofilm state 

while preserving the biofilm throughout growth.  Due to their ease of implementation and 

low cost, multiple platforms were arrayed in parallel allowing for simultaneous 

experiments.  The devices and measurement methodology were used to evaluate 

differences in biofilms formed under varying degrees of quorum sensing activity.  The 

influence of quorum sensing on physical stability of biofilms was evaluated by 

monitoring optical density while imposing a high shear rate on the biofilms.  Biofilm 

growth evaluated via the change in optical density was also compared to the thickness 

measured via confocal microscopy.  Biofilms formed by E. coli incapable of quorum 

sensing molecule synthesis were less optically dense, thinner, and covered less surface 

area than wild-type biofilms.  Addition of quorum sensing molecules partially restored 

wild-type biofilm characteristics to non-communicating bacteria.  While the optical 
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density changes of each biofilm were shown to be quite variable, relative optical 

differences between different types of biofilms showed more reproducibility.  A linear fit 

was used as a preliminary model for relating observed optical density changes to biofilm 

thickness.  With further experimentation, this model will allow for replacement of 

microscopy with continuous, non-invasive biofilm evaluation via optical density 

measurement.   

2.2 Second Generation Device 

The platform and results presented in Section 2.1 demonstrated that optical 

density can be used for biofilm monitoring.  However, a number of questions were raised 

by the results, particularly when examining variability in the raw data.  Some temporal 

aberrations may be attributed to biofilm sloughing, where segments of biofilm may 

detach and exit the microfluidic channel, decreasing the average amount of biofilm in 

addition to locally decreasing the biomass at the location from which the segment 

detached.  Alternatively, these segments may be deposited elsewhere in the channel and 

continue to grow in the new location; in this situation, the local biomass at the origin of 

the segment decreases, but the average biomass within the channel is unchanged.  These 

two scenarios are significantly different, especially when evaluating an anti-biofilm 

treatment – a permanent decrease in total biomass indicates an effective treatment, while 

sloughing and re-deposition elsewhere in the channel indicates no change in the average 

biofilm state.  In a platform with only two observation windows, it is impossible to 

differentiate between these two scenarios if all that is observed is a local decrease in 

biomass.   
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In order to distinguish local changes from overall changes in biofilm, a platform 

with the capability of observing the entire microfluidic channel is required.  Considering 

this need, the platform presented in Section 2.1 was redesigned to replace the two 

individual photodiodes with a charge coupled device (CCD), essentially a linear array of 

photodiodes extending over the length of the microfluidic channel.  The CCD provided 

the capability of obtaining local optical information from each point in the array; the 

information obtained over the array was also averaged to reflect the overall biofilm state.  

The instrumentation, integration, and testing of the CCD with biofilm formation in a 

microfluidic channel was performed by Mr. Matthew Mosteller [126] as an extension of 

my development of the initial platform as summarized previously.   

2.2.1 Platform Design 

While an overview of the CCD-based microfluidic biofilm measurement platform 

and its implementation is presented here, specifics of the hardware and software involved 

therein are discussed in detail elsewhere [126].   

In general, the CCD-based measurement platform was similar in structure to that 

of the first generation platform, with a microfluidic channel placed on top of a transparent 

base with a patterned observation window aligned to a photodector.  The CCD used 

included a 128 x 1 linear array of photosensitive pixels, with each pixel measuring 

120 x 70 µm.  The array was positioned under a PDMS microfluidic channel temporarily 

bonded to a transparent substrate (500 µm-thick Pyrex®).  As in the first-generation 

device, CCD alignment to the channel and the LED light source was aided by metal 

(20 nm Cr under 200 nm Cr/Au) patterned on the transparent substrate.  In addition to 

defining the observation windows, the patterned metal was also used to apply electric 
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fields to biofilms for bioelectric effect studies.  Channels and CCDs were arrayed in 

parallel, as shown in Figure 2.13.  

 

Figure 2.13. Schematic of the CCD-based microfluidic biofilm observation platform.  A printed circuit board 

(PCB) served as a foundation for circuitry and electrical connections.  An array of microfluidic channels 

patterned in PDMS was placed on top of a transparent substrate and aligned to the underlying CCD array.  The 

platform depicted here also included electrodes patterned on the transparent substrate for applying an electric 

field to biofilms during growth.  Modified from [133]. 

As in assembly and testing of the first generation device, arrayed microfluidic 

channels and measurement circuitry were aligned to a light source and placed in an 

incubator maintained at 37 °C (Figure 2.14).  In this case, incident light for performing 

the optical density measurements was provided by an LED panel generating diffuse, red 

light.   

 

Figure 2.14. Schematic of experimental setup for CCD-based microfluidic biofilm observation platform.  The 

CCD array, microfluidic channel, and samples to be introduced into the channel were contained in a 37 °C 

incubator.  A syringe pump operating in withdrawal mode created sample flow in the microfluidic channels.  

External power supplies and function generators enabled actuation of the CCD sensors, while a DAQ card and 

PC were used to obtain and analyze optical density measurements. Reproduced from [126]. 

Electric contacts 
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µ-fluidic channel 

PCB platform 

PDMS  
Parallel 
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The platform was used for biofilm studies using methodologies similar to those in 

Section 2.1.2.  After inoculation of the channels with a bacterial suspension, continuous 

flow of LB was applied during biofilm formation while optical density signals were 

continuously recorded.   

2.2.2 Results and Discussion 

The effectiveness of the CCD setup in providing details on spatiotemporal events 

in the microfluidic channel was demonstrated by flowing optically dense droplets (water 

dyed with food coloring with an OD600 ~ 45) in a transparent fluid (mineral oil) through 

the channel.  The average response of the CCD array, shown in Figure 2.15a, showed a 

series of peaks in optical density as droplets were introduced into and left the channel.  

Separating the average signal into the individual signals from each pixel in the array 

(Figure 2.15b) illustrated how pixels close to the entrance of the channel 

(position = 0 mm) measured the optical density increase of the droplet before pixels at the 

opposite end of the channel, the movement of the optical density peak down the position 

axis of the plot reflecting the movement of the droplet down the channel.   
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a) b) 

 
Figure 2.15. Demonstration of spatiotemporal optical density monitoring in the CCD-based microfluidic biofilm 

observation platform using flow of optically dense droplets in transparent mineral oil.  (a) Average change in 

optical density within one microfluidic chamber of the CCD-based biofilm measurement platform during 

droplet flow.  (b) Spatiotemporal detection of droplet flow within the same microfluidic channel. Reproduced 

from [126]. 

The same measurement methods used for droplet observation were expanded 

toward evaluating bacterial biofilm growth along the microfluidic channel.  Figure 2.16 

shows a sample spatiotemporal plot of biofilm growth, highlighting what were possibly a 

stationary biofilm segment (Figure 2.16a) and a segment of biofilm translocating down 

the channel over time (Figure 2.16b).  While the data shown in Figure 2.16 were not 

obtained from an untreated wild-type E. coli biofilm but one treated with an electric field 

during growth, the principles of spatiotemporal biofilm observation were clearly 

demonstrated.  

 

Flow 
direction 
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Figure 2.16. Surface reconstruction of biofilm surface morphology showing (a) stationary biofilm and (b) biofilm 

drifting through the channel with time.  The surface reconstruction as created using the spatiotemporal data 

from optical density measurement using the CCD-based biofilm measurement system.  This particular plot is 

from a biofilm sample treated with an electric field.  Reproduced from [126]. 

2.2.3 Conclusion 

This section demonstrated the expansion of microfluidic biofilm optical density 

measurement into a format allowing higher spatiotemporal resolution of biofilm 

measurements.  Incorporation of a CCD array into a microfluidic biofilm formation 

platform not only provided average optical density measurements over the entire 

microfluidic channel, but through the resolution provided by an array of photosensitive 

pixels, was also able to provide insight into changes in the biofilm structure.  The ability 

to differentiate localized growth, detachment, and reattachment of biofilm in an 

integrated manner further advances the technique of optical density monitoring as a 

viable option for biofilm study.   

2.3 Chapter Summary 

This chapter covered the development of optical density monitoring as a 

measurement technique for evaluation of bacterial biofilm growth in a microfluidic 

environment.  The platforms developed through this work include the first, proof-of-

concept device delivering general information as to biofilm state, and the expansion of 



65 

 

this device to provide spatiotemporal details of biofilm dynamics.  Microfluidic biofilm 

reactors provide tight environmental control and small sample volumes, in addition to the 

ability of fabrication and parallel integration with optical measurement components at 

low cost.  These capabilities not only can be leveraged for scientific characterization of 

biofilms, as presented in this chapter, but also can be applied toward evaluating new anti-

biofilm treatments, as presented in the next chapter.   
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3 Evaluating Effects of Quorum Sensing Inhibitors on Biofilm 

Formation 

This chapter will cover the application of the first-generation biofilm optical 

measurement platform developed in Chapter 2 for evaluating the effect of quorum 

sensing inhibitors (QSIs) on biofilm formation.  First, one such QSI, isobutyl-DPD, was 

demonstrated to inhibit the maturation of Escherichia coli biofilms grown in 

microfluidics.  Using optical density monitoring, it was shown that a combinatorial 

approach wherein isobutyl-DPD was used with near-MIC levels of the antibiotic 

gentamicin produced near complete clearance of pre-existing E. coli biofilms.  Similarly, 

another AI-2 analog, phenyl-DPD, also applied in combination with gentamicin, resulted 

in clearance of preformed Pseudomonas aeruginosa biofilms.   

As antibiotic-tolerant persister cells are a major contributor to the tenacity of 

biofilm infections, studies were performed to investigate a potential link between the 

biofilm inhibition and clearance instigated by QSIs, and the incidence of persister cells.  

The results of this investigation suggested that QSI administration to a bacterial culture 

has no significant effect on persister cell formation, although future investigation is 

warranted.  The work in this chapter was performed in conjunction with Dr. Varnika Roy 

as an equal contributor.  The majority of Section 3.1 has also been published in Applied 

Microbiology and Biotechnology with Dr. Varnika Roy as a co-first author [119].   

3.1 Evaluation of Quorum Sensing Inhibitors using Microfluidic Platform 

with Optical Monitoring  

The inhibitory effects of the QSIs studied were evaluated in two biofilm growth 

scenarios: application from the beginning of growth, and application to a preformed 
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biofilm after maturation.  The former demonstrated efficacy in biofilm prevention, and 

the latter demonstrated efficacy in clearing biofilms.  While the microfluidic platform 

provided dynamic, real-time measurements of biofilm density, studies were also 

performed in a microfluidic channel on an unpatterned glass coverslip (i.e. no observation 

windows patterned in chrome as in Section 2.1).  While the unpatterned substrate 

precluded real-time optical density measurement, it allowed more detailed confocal 

microscopy studies that provided strong physical evidence of biofilm clearance.  The 

combination of biofilm evaluation methods and growth scenarios produced detailed proof 

that the AI-2 based QSIs studied not only reduce biofilms, but also can potentiate the 

biofilm-clearing efficacy of traditional antibiotics.   

3.1.1 Methods 

3.1.1.1 Microfluidic Device Fabrication and Assembly 

Fabrication of the microfluidic platform was described in [118] and is also 

presented in Section 2.1.1; it is summarized again here.  The base of the device was a 

coverslip, a transparent substrate thin enough for high resolution inverted confocal 

microscopy.  For experiments with continuously measured optical density, coverslips 

were patterned with two observation windows in chrome (see Appendix A, Mask #1) to 

allow alignment of windows with embedded optics.  In experiments where confocal 

microscopy alone was used to evaluate biofilms formed throughout the channel (7 points 

in each channel were imaged), the coverslips were uncoated.  Although the elimination of 

the two windows precluded measurement of optical density using the methods of Chapter 

2, the information gained with confocal microscopy at more than two locations within the 
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channel provided more certainty in evaluating biofilm knockdown by a new QSI.  Optical 

density data was then used to corroborate these confocal microscopy results.   

The microfluidic channel itself consisted of polydimethylsiloxane (PDMS) 

molded by photopatterned Microchem SU8-50 (Appendix A, Mask #2).  Here, the mold 

produced microfluidic channels 100 µm deep, 500 µm wide, and 2 cm long.  Ports for 

interfacing the channel to fluidic tubing were punched into the PDMS using a 2 mm 

dermatological punch. The PDMS was reversibly adhered to the coverslip by soaking the 

bonded side of the PDMS in methanol for 1 minute, then aligning and placing the section 

of PDMS over the coverslip. 

3.1.1.2 Biofilm Formation 

Biofilms were formed either by E. coli K-12 MG1655 ATCC #47076, or by P. 

aeruginosa PAO1.  For both strains, overnight cultures were diluted to an OD600 of 0.25, 

introduced into the microfluidic channel, and incubated with no flow at 37 °C for 2 hours.  

Luria Bertani (LB) growth medium was then continuously suctioned from a 

microcentrifuge tube reservoir into the device at a rate of 10 µL/hr.  As needed, this 

medium was supplemented with various concentrations of analog or antibiotic at 

specified times.  In studies of biofilm inhibition, after 2 hours of cell incubation, the 

analog diluted in LB medium was flown into the microfluidic channel for 48 hours at 

10 µL/hr.  In studies of effects on preformed biofilms, LB was introduced over the cells 

at 10 µL/hr for a period of 36 to 48 hours to yield stable biofilms.  Then, the analog or 

analog-antibiotic combination was introduced for an additional 36 to 48 hours.  In all 

experiments, growth medium was refreshed every 12 hours for all biofilms by replacing 

the used reservoir with one containing fresh LB or a freshly prepared solution of LB and 
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analog or antibiotic.  This procedure was implemented to prevent potential QSI 

degradation and maintain parallelism between concurrent experiments.   

3.1.1.3 Biofilm Staining and Confocal Microscopy 

Biofilms were stained in situ for microscopy.  They were first treated with a 

Live/Dead bacterial labeling kit (Invitrogen #L7012) in which two labeling components 

were mixed in a 1:1 ratio to a final volume of 10 µL.  The dye was introduced into the 

channel at 10 µL/hr, the same flow rate as during biofilm growth.  This treatment was 

then followed by 10 µL/hr flow of 100 µg/mL of calcofluor (Fluorescence Brightener 28, 

Sigma Aldrich #F3543) in deionized (DI) water for labeling polysaccharides contained in 

the biofilm matrix [134].  The dyes were fixed by flowing in 3% paraformaldehyde at the 

same flow rate.   

Labeled samples were imaged using a confocal microscope (Zeiss LSM710).  For 

unpatterned coverslips, Z-stacks were obtained at 7 points in each microfluidic channel, 

with each stack containing 150 image slices.  For patterned coverslips used while 

measuring the optical density of the biofilms, two image stacks were obtained in each 

channel (i.e. one at each observation window).  The image stacks were analyzed using 

COMSTAT [95], which provided morphological characteristics.  Biofilm thickness and 

biomass were averaged over the image stacks obtained at each point in the microfluidic 

channel.  While other parameters may be investigated via COMSTAT, these two features 

were deemed most representative of the changes observed in these studies.  Additionally, 

surface reconstructions of the biofilms were created using Imaris (Bitplane, Inc.) to aid in 

visualization of the resulting structures. 
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3.1.1.4 Optical Density Measurement and Analysis 

While confocal microscopy is extremely effective for characterizing bacterial 

biofilms, especially in conjunction with analysis software such as COMSTAT [95] and 

Imaris, implementing this method requires extensive sample preparation and imaging 

time; the staining and imaging performed in this study required up to 12 hours of time 

added to the experiment itself.  In addition to the benefits provided by the microliter-size 

channel volume, microfluidic biofilm reactors also possess the ability to integrate precise 

biofilm measurements with the fluidic operation of the device.  In this work, the 

microfluidic reactor was integrated with continuous optical density measurement [118] to 

dynamically evaluate the synergistic influence of AI-2 analog and antibiotic on 

preformed biofilms. 

The data corresponding to the change in optical density of the biofilms were 

obtained from the photodiodes using the methodologies described in Chapter 2.  

However, the methodology for analyzing the raw optical density data was updated to aid 

in understanding the trends and to account for device-to-device variations.  As optical 

density measurement was used only to evaluate QSI effects on preformed biofilms, data 

for each channel (the average of the response of the two photodiodes) was normalized 

with respect to the optical density at the time treatment was introduced (48 hours).  This 

method reflects that as of the time of introduction, the biofilms were grown under 

identical conditions although their optical density values may not be identical due to 

device-to-device variations in biofilms.  In a system such as a spectrophotometer, a high 

optical density such as that of a mature, 48 hour biofilm, is expected to yield a non-linear 

response.  However, normalization to the biofilm state at 48 hours was considered to be 
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appropriate for this particular microfluidic platform due to the linearity seen at high 

OD600 values in the photodiode output, as discussed in Section 2.1.3.1.   

Since the optical density data itself fluctuates as the biofilm grows, as discussed in 

Section 2.1.4.1, the data for each curve was fitted in Origin (Origin Lab Corporation) 

using a Churchill model [135].  The Churchill model, while intended for application 

toward batch cultures, was used here to approximate the similar growth and death phases 

of a biofilm.  The model is represented by 

     [  
     

  ]     (3.1) 

Here, N represents the biomass; in this case, it was assumed to be directly correlated to 

the optical density.  f1 and f2 represent the growth and death of the culture, respectively, 

and can be expressed in a generalized form as 

              (3.2) 

                  (3.3) 

When the model was fitted to the raw data, overall trends were represented, as 

shown in the sample data from Figure 3.1a.  However, the occasional sharp fluctuations 

in optical density heavily influenced the fitted curve – while the biofilm at one 

observation window may become suddenly much more optically dense than the other due 

to natural fluctuations, the average of the two windows also changes sharply, but is not 

indicative of the overall behavior of the biofilm.  To minimize the effects of sharp 

fluctuations, the Churchill model was also fitted to data points representing 6 hour optical 

density averages, producing the plot shown in Figure 3.1b.   
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a) b) 

 

Figure 3.1. Analysis of optical density curves and fits using E. coli biofilm growth data (a) Normalized change in 

optical density; raw data (dotted line) was normalized with the change in optical density at 48 hours set to be 1.  

The curve was fit (solid line) using a Churchill model.  (b) Adjusted curve fit, using a fit to data averaged every 6 

hours (squares).  The curves have also been adjusted to reflect a zero change in optical density at the beginning 

of growth. 

 

3.1.2 Results and Discussion 

3.1.2.1 Biofilm Maturation in the Presence of AI-2 Analog 

The effect of the analog on biofilm growth was tested by continuously exposing 

the cells to analog diluted in LB.  As summarized in Figure 3.2a, perfusion of LB media 

enabled biofilm growth to an average thickness of 22 µm and an average biomass of 

14 µm
3
/µm

2
 by the end of the incubation period (48 hours).  The presence of 40 µM 

isobutyl-DPD inhibited the biofilm growth by approximately 70%, yielding films 7 µm 

thick with a biomass of 3.5 µm
3
/µm

2
.  Increasing the analog concentration to 100 µM had 

no further inhibitory effect on biofilm thickness.  Surface rendering images of the 

biofilms confirmed that without isobutyl-DPD exposure, the biofilm was much thicker 

and more structured (e.g. more void space, microchanneling, larger groupings of live and 

dead cells, Figure 3.2b).  The presence of analog in both 40 and 100 µM concentrations 

yielded biofilms more like thin bacterial carpets (Figure 3.2Figure 3.2c, d).  A striking 

difference however, was found between the isobutyl-DPD treated cultures.  The biofilm 
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with 100 µM isobutyl-DPD appeared sparser and had less surface coverage than the 

biofilm exposed to 40 µM isobutyl-DPD.  Moreover, nonviable cells were virtually 

absent and a preponderance of polysaccharide was found.  These morphological 

differences are evident in the surface reconstructions presented in Figure 3.2b-d.   

 

Figure 3.2. Analysis of 48 hour E. coli biofilm thickness and architecture in response to isobutyl-DPD.  a) 

Thickness and biomass of biofilm analyzed by COMSTAT (average of four different points).  b–d) 

Representative Imaris 3D surface reconstructions of the biofilm with b) LB only, c) LB+40 μM isobutyl-DPD, d) 

LB+100 μM isobutyl-DPD.  Images were selected from locations with average thicknesses and biomasses closest 

to the average of all points analyzed. 

While the AI-2 analogs did not directly kill the bacteria, the interference in the 

mechanisms involved in forming a biofilm (e.g. motility [15] and extracellular matrix 

secretion [56, 129]) appeared sufficient for inhibition of a stable, three-dimensional 

biofilm architecture.  Lacking the structural cohesiveness of an extracellular matrix 



74 

 

produced with the aid of native quorum sensing [56], biofilms treated with large analog 

concentrations were potentially more susceptible to delamination.  As non-viable cells 

have weaker substrate adhesion than viable cells, they are more likely to delaminate in 

the absence of a cohesive polysaccharide matrix.  This hypothesis was supported 

particularly by the results in Figure 3.2d; after growth with 100 μM isobutyl-DPD, 

nonviable cells were removed from the biofilm polysaccharide matrix.  Conversely, the 

remaining polysaccharide matrix that was not able to retain these cells maintained 

adhesion to the substrate.  Irrespective of these polysaccharide and Live/Dead assays, 

results clearly demonstrated that isobutyl-DPD, a known inhibitor of QS responses in E. 

coli [84], can also decrease biofilm formation by E. coli . 

Compared to untreated biofilms, biofilms treated with AI-2 analogs throughout 

growth were thinner and less ordered as noted by an apparent lack of cohesive 3D 

structure, such as mounds.  QS inhibitors, while not bactericidal, can mitigate biofilm 

formation by inhibiting bacterial communication, thereby restricting expression of genes 

related to biofilm formation [56, 136].  This suggests that the bacteria within a nascent 

biofilm might phenotypically be more similar to bacteria in suspension.  Biofilms grown 

here, while continuously supplemented with AI-2 analogs, showed decreased formation 

even without additional antibiotic.   

3.1.2.2 Effects of Analog on Preformed E. coli and P. aeruginosa Biofilms 

The phenotypic changes in biofilms continuously exposed to a QSI spurred 

interest in whether the analog could alter existing biofilms.  As isobutyl-DPD is an 

established QS quencher, it is neither bacteriostatic nor bacteriocidal among planktonic 

cells [84].  Thus, if isobutyl-DPD were used to treat the bacteria and the pathogenic 
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bacterial populations were not removed from the host, an infection would persist.  As the 

biofilms described in Section 3.1.2.1 appeared to persist after continuous exposure to 

isobutyl-DPD, seen in their thinner and more porous structures, it was hypothesized that 

antibiotic co-administration could be more effective in eventual eradication of biofilm.   

In order to test this approach, combinations of gentamicin (5 µg/ml) with 

increasing concentrations of isobutyl-DPD (40 µM and 100 µM) were used to treat pre-

established E. coli biofilms.  The control biofilm, exposed to LB medium only, exhibited 

an average thickness of 12 µm and an average biomass of 8.5 µm
3
/µm

2
 (Figure 3.3a).  

Addition of gentamicin without AI-2 analog decreased the thickness slightly to 10 µm, 

yet the biomass dropped by 50% (3.5 µm
3
/µm

2
).  However, addition of antibiotic and 

analog (40 µM isobutyl-DPD) decreased the average biofilm thickness to 6 µm (Figure 

3.3a).  Most importantly, this study showed that 100 µM isobutyl-DPD used with 

gentamicin was the most effective in clearing the preformed biofilm, shown by the 

reduction in thickness by more than 80% to an average of 2 µm and by the nearly 

complete removal of biomass.  The 3-D surface rendering images confirmed 

morphological data (Figure 3.3b-e), as the biofilm surface thickness decreased 

significantly in the presence of both isobutyl-DPD and gentamicin.  With 100 µM of 

analog and 5 µg/ml gentamicin, the biofilm was extremely sparse.  
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Note: Biofilms were formed for 36 hours, then analog and antibiotic were flown over the preformed biofilm for another 

36 hours. 

Figure 3.3. Analysis of effect of combinatorial approach analog and gentamicin on preformed E. coli biofilm 

thickness and architecture.  a)Thickness and biomass of biofilm analyzed by COMSTAT (average of five 

different points in the channel).  b–e) Representative Imaris 3D surface reconstructions of the biofilm with b) LB 

only, c) LB+5 μg/mL gentamicin, d) LB+40 μM isobutyl-DPD+5 μg/mL gentamicin, e) LB+100 μM isobutyl-

DPD+5 μg/mL gentamicin.  Images were selected from locations with average thicknesses and biomasses closest 

to the average of all points analyzed. 

QS quenching activity of P. aeruginosa by some C1-alkyl analogs, phenyl-DPD 

in particular, has been observed [85].  Considering the reduction of preformed E. coli 
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biofilms upon application of isobutyl-DPD with gentamicin, a combination of phenyl-

DPD (100 µM) and gentamicin (5 µg/ml) was applied to pre-existing P. aeruginosa 

biofilms, analogously to the E. coli experiments.  When treated with a combination of 

phenyl-DPD and gentamicin, P. aeruginosa biofilms became far more thin and more 

sparse than untreated controls (thickness, 2 µm vs. 26 µm; biomass, < 2 µm
3
/µm

2
 vs. 

15 µm
3
/µm

2
, Figure 3.4a).  These results were corroborated by qualitative evaluation of 

the images obtained through surface rendering of confocal microscopy results (Figure 

3.4b-e).  Biofilms grown without the addition of phenyl-DPD showed denser surface 

coverage and appeared more structured than biofilms grown with phenyl-DPD.  The P. 

aeruginosa biofilms treated with both phenyl-DPD and gentamicin, similar to E. coli 

results, were much sparser than controls with LB.  
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Note: Biofilms were formed for 36 hours, then analog and antibiotic were flown over the preformed biofilm for another 

36 hours. 

Figure 3.4. Analysis of effect of combinatorial approach analog and gentamicin on preformed P. aeruginosa 

biofilm thickness and architecture.  a) Thickness and biomass of biofilm analyzed by COMSTAT (average of 

five different points in the channel).  b–e) Representative Imaris 3D surface reconstructions of the biofilm with 

b) LB only, c) LB+5 μg/mL gentamicin, d) LB+100 μM phenyl-DPD, e) LB+100 μM phenyl-DPD +5 μg/mL 

gentamicin.  Images were selected from locations with average thicknesses and biomasses closest to the average 

of all points analyzed. 

In the experiments performed on biofilms continuously exposed to a QSI from the 

beginning of growth, it was demonstrated that a QSI could inhibit biofilm formation.  

Here, it was also observed that application of QSIs to a mature biofilm also decreased its 
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thickness and biomass compared to untreated biofilms.  When AI-2 analog was 

supplemented with gentamicin, the biofilms were almost completely removed, 

presumably because they were more susceptible to antibiotic exposure.  The above 

experiments, for the first time, demonstrated the effectiveness of AI-2 analogs in 

decreasing the growth of E. coli and P. aeruginosa biofilms. 

This study highlighted the importance of a QSI and antibiotic combinatorial 

therapy as being more effective than antibiotics alone in significantly clearing both E. 

coli and P. aeruginosa preformed biofilms.  Of note is the concentration of gentamicin 

used in this work, 5 g/mL, specifically selected to be on the same order of the 4 g/mL 

MIC for E. coli K-12 [137].  Gentamicin MIC values for P. aeruginosa PAO1 have been 

reported from 2 to 6.25 g/mL [138].  The effects on biofilms seen here are created by 

antibiotic concentrations within the normal planktonic culture-derived MIC values, which 

in turn, are expected to be much lower than needed for biofilms [121, 139].  That is, 

standard inhibitory antibiotic doses for planktonic cultures were applied combinatorially 

with AI-2 analogs and were able to clear preformed biofilms in the microfluidic channels.  

The augmentation of the antibiotic or anti-biofilm effects of gentamicin by co-

administration with AI-2 analogs is significant because it could lead to dispersal of 

biofilm infections with sub-MIC levels of antibiotics, thereby preventing destruction of 

the native microflora. Second, the use of lower concentrations of antibiotics can 

potentially delay the emergence of resistant strains.  Also, for existing antibiotics with a 

narrow therapeutic window due to toxicity to the host, a strategy to lower the MIC or 

synergistically aid the antibiotic to clear biofilms at lower concentrations would expand 

the applicability of these antibiotics.   



80 

 

3.1.2.3 Investigation of Live/Dead Proportions 

The Live/Dead staining kit used is designed so that SYTO9, which fluoresces 

green, stains the DNA of both viable and unviable bacteria.  Propidium iodide (PI) stains 

the DNA of only unviable bacterial cells with damaged cell membranes; as PI has a 

higher degree of fluorescence intensity than SYTO9, its signal dominates over the 

SYTO9 signal generated by stained unviable cells.  In theory, exposure to antibiotic kills 

more bacteria and produces more PI-stained cells.  As posited previously, exposure to an 

AI-2 analog inhibits EPS production, possibly allowing for the release of nonviable cells 

from the biofilm since they have a weaker degree of adhesion than healthy bacterial cells.  

Therefore, it is conceivable that a biofilm may be characterized by the ratio of red to 

green fluorescent cells, indicative of the health of the biofilm when taken into 

consideration with the biofilm’s average thickness.   

In order to investigate the potential for biofilm characterization via live : dead 

ratio, the confocal images obtained for the above studies were analyzed for viable cell 

content, using the volumetric ratio of red fluorescent to green fluorescent cells obtained 

using Imaris.  Data are summarized below in Figure 3.5. 
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Figure 3.5. Comparison of Live/Dead percentages in confocal images presented in Figures 3.2-3.4, reflecting the 

effect of continuous E. coli biofilm exposure to isobutyl-DPD (Figure 3.2), and exposure of preformed E. coli 

(Figure 3.3) and P. aeruginosa (Figure 3.4) biofilms to gentamicin and isobutyl-DPD or phenyl-DPD.  Each bar 

represents one imaged location within the channel.  Results were expected to show a decrease in unviable cells 

with addition of DPD analogs, indicative of a weaker extracellular matrix; as shown, actual results obtained 

were inconclusive. 

No clear deductions can be made from Figure 3.5.  In the case of the data obtained 

from image stacks presented in Figure 3.2 (the first 3 bars), addition of analog decreased 

the unviable cell composition as expected.  However, in the data from Figure 3.4 (the last 

4 bars), addition of analog or of antibiotic had little effect on the unviable cell 

composition, and combinatorial addition of both increases the unviable cell composition.   

Although the concentrations of stains are developed by the manufacturer to be 

applicable to the majority of strains of bacteria, irregular staining or false signals are still 

possible depending on a number of factors, including the metabolism of the bacterial 

culture and thoroughness of rinsing after stain application [140, 141].  If the 

Figure 3.2 Figure 3.3 Figure 3.4 
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viable : unviable cell ratio is to be used as a metric for biofilm health, extensive 

characterization of the stains and staining protocol for the strains and conditions used 

must be performed.  For the purposes of these studies, no quantitative conclusions were 

drawn from the amount of viable and unviable cells within a biofilm, and both types of 

stained cells were considered as a lumped element of biomass.   

3.1.2.4 Leveraging Microscale Reactor for Streamlined Measurement 

Optical density measurement using the device with the patterned base, as in 

Chapter 2, was used to gather data from both E. coli and P. aeruginosa biofilms treated 

with the analog-antibiotic combinatorial approach.  Dynamic analysis of replicate 

windows revealed a complex non-uniform process that when fitted to a mathematical 

model suggested relatively uniform biofilm growth overall for the first 48 hours, at which 

time, divergent behaviors were observed based on small molecule addition (Figure 3.6a, 

c).  For E. coli (Figure 3.6a, b), biofilm growth was similar over the first 48 hours 

between the three experimental groups grown under identical conditions over that period.  

After 48 hours and initiation of treatment to two of the channels, the biofilm progression 

deviated with the most dramatic departure being the combination of isobutyl-DPD and 

gentamicin.  For P. aeruginosa, effects were roughly similar, although gentamicin alone 

was less effective when comparing optical density and thickness (Figure 3.6c, d).  In all 

cases, however, the addition of gentamicin with a QSI after 48 hours slowed the progress 

of biofilm maturation relative to the controls, resulting in diminished films by the end of 

the experiments.   
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Figure 3.6. Analysis of effect of combinatorial approach on optical density and thickness using analog and 

gentamicin on E. coli (a, b) and P. aeruginosa (c, d) biofilms preformed for 48 hours.  a) Normalized change in 

optical density of E. coli biofilms; raw data (dotted lines) were normalized with the change in optical density at 

48 hours set to unity.  Curves were fitted (solid lines) using a Churchill model [135].  b) Thickness and biomass 

of E. coli biofilm analyzed by COMSTAT (average of two points in the channel).  c) Normalized change in 

optical density of P. aeruginosa biofilms; raw data (dotted lines) were normalized and fitted (solid lines) using a 

Churchill model.  d) Thickness and biomass of P. aeruginosa biofilm analyzed by COMSTAT (average of two 

points in the channel). 

While the optical data in Figure 3.6a, c are presented as discrete and averaged 

values, in actuality, a large amount of information was gathered from the two 

photodiodes.  By observing the temporal variance in the response (Figure 3.7), the state 

of the biofilm and temporal disturbances were evaluated.  It was noted that for continuous 

optical measurements over the two observation windows, the standard deviation in the 

optical density values was typically less than 10% of the average after initial biofilm 

growth, as seen after the first 24 hours of P. aeruginosa biofilm growth in the sample 

data in Figure 3.7.  The internal consistency of the spatial and temporal variation in 
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biofilm optical density added to the reliability of the trends in optical data observed for 

such a small sample volume.  It was noted, however, that increasing the number of 

observation windows as in the second generation device in Section 2.2 would enable 

greater resolution of the area-based heterogeneity of the film. 

 

Figure 3.7. Box-and-whiskers plot of the control group (LB) in Figure 3.6c, demonstrating the temporal 

variability observed through optical density monitoring.  Each square represents the optical data averaged 

between two windows and averaged over 6 hour time windows centered at each point (endpoints are averaged 

over 3 hours).  Middle horizontal lines represent the median, and top and bottom horizontal lines represent ±1 

standard deviation of the data.  Minimum and maximum points within the data sets are denoted by an “x”. 

3.1.3 Conclusion 

The use of a microfluidic testing environment with small sample volumes made 

this investigation of QSI impact on biofilm formation possible. The integration of optical 

measurements in a dynamic and controllable environmental setting allowed for 

evaluating the “instantaneous” state of the biofilm.  This contrasts with the sole use of 

microscopy, which only permits an endpoint measurement.  Therefore, the use of this 

microfluidic setup revealed phenotypic data which normally would have been lost had 

only endpoint measurements been used.  Obtaining as much information as possible is 

especially important considering that the formation of a biofilm itself is highly variable.  

This is evidenced by the degree of variance in optical density observed over time.  By 
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tracking discrete points throughout biofilm growth and treatment, not only is the 

timescale of the contribution of the analog and antibiotic synergism toward biofilm 

reduction clarified, but additional information as to the instantaneous biofilm state and 

stability is gained.  The methodology implemented here thereby promotes a more 

complete understanding of the temporal and spatial variance in biofilm growth. 

In the translation of this work to clinical application, parameters obtained from 

the in vitro device that enable prediction in vivo or in other clinical situations would be 

valuable.  The flow conditions, for example, that are imposed on biofilms within our 

device create shear stress levels similar to those found in interstitial fluid [142].  Shear 

stress, along with the bacterial strain, growth media, and materials used to construct the 

microfluidic channel, may all be adjusted to more closely mimic the environments in 

which biofilms typically form infections [143].  Also, owing to the microscale 

confinement imposed by this system, another physical parameter, biofilm thickness, 

might be a good predictor of in vivo behavior.  Dental biofilm thicknesses have been 

shown to grow to approximately 50 μm after 1 week [144], while mature biofilms 

recovered from urinary catheters can range between 3 and 490 μm, depending on the 

formative species [145].  A mouse model of thermal injury showed mature, 11 μm-thick 

P. aeruginosa biofilms at 46 hours [146].  While the biofilms formed may be thin, the 

infections formed in this type of model are typically fatal within 48 hours [147].  

Combining these models with the fact that biofilms produced in this work range from 25 

to 40 μm within 48 hours, this microfluidic platform is capable of producing biofilms 

within the appropriate ranges for extension to clinical environments.  Also, the novel 

combinatorial treatment, as presented in this work, is ideally suited toward expanding the 
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range of physiological, chemical, and physical parameters needed to most accurately 

mimic in vivo systems. 

3.2 Effect of Quorum Sensing Inhibitors on Persister Cells 

The major knockdown of biofilm formation produced by QSIs applied in 

conjunction with antibiotics raised a number of questions as to the mechanisms by which 

the biofilm was reduced.  As discussed in Chapter 1, antibiotic-tolerant bacterial persister 

cells are a major contributor to the formation of chronic biofilm infections; one 

hypothesis for the effectiveness of the synergistic treatment was that the mechanism of 

biofilm inhibition was related to a possible knockdown in the number of persister cells.  

While unpublished studies mentioned in a review by Lewis indicate quorum sensing most 

likely has no effect on persister cell formation [54], two different persister assays were 

performed on cells exposed to a QSI in order to evaluate potential effects of QSIs on 

persister cells.  

3.2.1 Methods 

3.2.1.1 Culture Conditions and Persister Isolation 

Persister assays were performed on E. coli K-12 MG1655 ATCC #47076 using a 

colony forming unit (CFU) assay adapted from [148].  Normally, persister cells are 

formed in suspension cultures of bacteria by treating the culture with a high dose of 

antibiotic.  All the cells are killed except for the persisters, which are genetically identical 

to the cells that were killed, but are simply dormant.  To perform the assay, an overnight 

culture of E. coli was grown in LB media at 37 °C and 200 rpm.  1 mL of the overnight 

culture was re-inoculated in 50 mL of LB media, and the suspension was allowed to grow 
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to an OD600 of approximately 0.5.  The suspension was centrifuged at 750 rpm for 

15 minutes, then resuspended in LB media to yield a suspension of OD600 1.0.  The 

resulting suspension contains cells in exponential phase, but at an artificially high 

concentration.   

Samples of these cells were treated for 24 hours under four conditions: control (no 

treatment), 100 µg/mL gentamicin, 100 µM isobutyl-DPD, and 100 µg/mL gentamicin 

with 100 µM isobutyl-DPD.  Within an experiment, replicates were performed for each 

of these four groups.   

3.2.1.2 Assessment of Persister Cell Populations 

After 24 hours of exposure to treatment, serial dilutions from 10
-2

 to 10
-8

 were 

prepared from all groups and plated on LB agar plates containing 50 µg/mL gentamicin.  

After 24 hours, colonies on the plates were counted; the number of colonies is indicative 

of the number of CFU remaining after the four treatments were administered.  After 

exposure to high doses of antibiotic, colonies are only formed by persister cells able to 

withstand such treatment.   

In addition to the CFU assay, samples of cells were treated with a Live/Dead 

bacterial labeling kit (Invitrogen #L7012) for examination with fluorescence automated 

cell sorting (FACS) to determine the percentage of live cells in treated cultures.  While 

FACS is not a traditional method for evaluating persister cell populations, after treatment 

with a high dose of antibiotic, most cells should be dead except for a small number of 

persisters, whose intact cell membranes will allow for fluorescent staining as “live” cells.  

FACS samples were prepared by centrifuging 250 µL samples from each culture at 

750 rpm for 15 minutes.  The supernatant, presumably consisting of spent LB growth 
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media, was pipetted out and replaced with the same volume of phosphate buffered saline 

(PBS).  Cells were resuspended in the solution, and treated with the Live/Dead staining 

kit according to the datasheet, which specifies 3 µL of total dye solution (consisting of a 

1:1 ratio of SYTO9 to propidium iodide) for a 1 mL bacterial suspension.  Dye was 

mixed thoroughly with the suspension, and incubated in the dark for 15 minutes.  Stained 

samples were fixed with 3% paraformaldehyde in a 1:1 ratio of sample to 

paraformaldehyde.   

3.2.2 Results and Discussion 

The results, including details of replicates within the colony forming unit assay 

and the FACS study, are shown in Figure 3.8.  Note that colonies were counted on plates 

with higher dilutions (denoted below x-axis) for groups with no antibiotic administration, 

as the high number of CFU plated at high dilutions yielded a number of colonies so large 

that colonies often merged together.   

a) b) 

 

Figure 3.8. Results from persister cell formation experiments.  In both (a) and (b), the first column was 

untreated, representing a control in which many colonies are expected; similarly, the third column was treated 

only with isobutyl-DPD, which does not cause cell death.  The second column and fourth columns respectively 

represent generation of persister cells via treatment with a high concentration of antibiotic and the addition of 

analog to this treatment. Groups 1 and 2 are replicates. (a) Data from counting colonies formed after plating 

treated suspensions.  (b) Data obtained via FACS. 
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There was a large amount of variation between replicates, making it difficult to draw 

definitive conclusions.  While most likely unrepresentative of the true biological results, 

averages of the two replicates in both assays were taken to aid in data interpretation.  

These data are shown in Figure 3.9.  

a) b) 

 

Figure 3.9. Data from Figure 3.8, where each bar is an average of Group 1 and Group 2 as presented in Figure 

1.  (a) and (b) correspond to the data from Figure 3.8a and 3.8b respectively.  As the data are the average of two 

data points, standard deviations are not presented.   

Examining the averages, the results for the control were expected, in that there 

were many live, intact cells capable of forming colonies.  Additionally, the large number 

of CFU and live cells in the group treated with only isobutyl-DPD were also expected, as 

isobutyl-DPD does not kill the cells at the concentration used.  Note that in these cases, 

plates with higher dilutions were used, as individual colonies could not be counted on 

plates inoculated with low dilution cultures.  In general, the groups to which gentamicin 

was added also yielded expected results, since there were fewer live cells.  These live 

cells represent the population of persister cells.  However, the addition of analog 

appeared to have little effect on formation of persister cells. 

a

) 

b

) 
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As discussed in Chapter 1, there are mentions in literature of unpublished studies 

indicating quorum sensing has no influence on persister cell formation [54].  It is possible 

that there may be an indirect relationship between quorum sensing and persister cells that 

the experiments here and in literature cannot elucidate, as AI-2 is linked to intracellular 

enzymatic pathways through a complex network.  Additionally, QSIs may also influence 

cellular pathways outside of the intended targets.  For example, Pan et al. showed that 

some synthetic brominated furanones, inhibitors of AI-2 based quorum sensing and 

biofilm formation, reduce the incidence of persister cells of P. aeruginosa PAO1 [149].  

However, this restoration of antibiotic sensitivity was also independent of the QS 

inhibition that the brominated furanones are associated with.  Considering the complexity 

of both quorum sensing and biofilm formation, along with the ongoing characterization 

of the AI-2 analogs used here, extensive studies beyond the preliminary work here must 

be designed and performed in order to clarify the relationships between these analogs, 

biofilm formation, quorum sensing, and persister cells.   

3.3 Chapter Summary 

This work demonstrated several key findings.  First, biofilm development was 

inhibited by continuous application of AI-2 analogs.  Second, combination of these 

analogs with sub-MIC gentamicin concentrations enabled removal of preformed biofilms.  

While the precise mechanisms of biofilm clearance in the presence of analogs remains 

unclear, initial experiments indicated a lack of connection between analog exposure and 

persister cell elimination.  In terms of the goals of the dissertation, what was most 

important was application of the microfluidic observation platform developed in Chapter 

2 to provide critical information about short-range biofilm changes in response to 
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administration of a new antimicrobial under test.  As a whole, the work demonstrated 

both the success of the platform when used as a pharmaceutical testbed, as well as the 

potential to enable significant advances in bacterial biofilm science.    
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4 Development of Multi-depth Microfluidics for Controlled 

Biofilm Studies  

This chapter covers the development of a device designed to address the 

variability in biofilm formation between devices observed in the studies presented in 

Chapter 2.  The new device also streamlined performance of multiple parallel 

experiments.  The platform was designed to segment bacterial biofilms in one 

microfluidic channel for multiplexed experiments and promotion of experimental control.  

Sectioning was achieved by integrating hydraulically actuated valves into the 

polydimethysiloxane (PDMS) microfluidic device.  The differing geometric requirements 

of hydraulic valving (shallow, rounded) and biofilm growth (deep) were negotiated by 

creating a mold with two types of photoresist.  Fabrication incompatibilities between 

resist types were circumvented by protecting pre-existing photoresist structures with a 

solvent barrier layer using atomic layer deposition (ALD).  The final device successfully 

demonstrated the growth and subsequent segmentation of Escherichia coli biofilms, and 

was used to evaluate the effects of different concentrations of the detergent sodium 

dodecyl sulfate (SDS) on mature biofilms.   

4.1 Design 

4.1.1 Overview 

Macroscale biofilm studies have shown that biofilm formation is sensitive to a 

variety of growth parameters, and it is likely that no two biofilms can be compared [27, 

28].  To address biofilm variability, macroscale reactors such as the Modified Robbins 

Device or Calgary Biofilm Device often incorporate a method for performing assays on 

multiple sections of one biofilm [8, 11].  Performing different tests on separate portions 



93 

 

of one biofilm provides a significant advantage over parallel biofilm formation, as the 

variability between biofilms formed separately under the same conditions can preclude 

their accurate comparison when used as experimental and control groups in a biofilm 

assay.   

The compiled results of the previous chapters demonstrated that biofilms formed 

in the custom microfluidic reactor also exhibit variability between separate experiments.  

This was seen in the spread of optical density data in Chapter 2 – identical experiments 

performed on different days yielded biofilms with different optical densities, 

necessitating use of the percent difference between experimental and control groups as a 

metric.  Variability was also evident in comparing the control biofilms between 

experiments in the QSI studies in Chapter 3.  In one study, 96-hour Pseudomonas 

aeruginosa biofilms were 26 ± 11 µm thick, while another identical study yielded 

17 ± 2 µm-thick biofilms (Figure 3.4a and Figure 3.6d).  Considering the observed 

experiment-to-experiment variability, the macroscale approach of biofilm segmentation 

was adapted for integration in a microfluidic biofilm growth platform.   

The platform included one set of microfluidic channels where biofilms grew and 

were sectioned, placed on top of another layer of microfluidic channels that operated 

valves to manipulate the biofilms.  An overview of the device operation is depicted in 

Figure 4.1a, b.  The device was designed to have one central microfluidic channel where 

biofilms form and mature, with access to side channels blocked by closed valves (Figure 

4.1a).  After maturation, the central channel was divided into three sections using 

hydraulically actuated valves integrated in the PDMS structure.  Valves that formerly 
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blocked access to the side channels were opened, as shown in Figure 4.1b, to allow flow 

over each of the three sections of preformed biofilm.   

 

Figure 4.1. a) Schematic of device operation during biofilm growth, with side channels blocked by closed valves 

(solid black squares) b) Device operation during biofilm sectioning, with side channels open and central channel 

trisected by two closed valves c) Side-view schematic of open push-up valve integrated with two-depth channel 

d) Side-view schematic of closed push-up hydraulic valve with pressure applied to the liquid-filled control 

channel to close the valve. 

The valves to control flow and create the device configurations shown in Figure 

4.1a, b were integrated in two devices layers of PDMS using a hydraulically actuated 

“push-up” style valve [110] (Figure 4.1c).  Microchannels in the top layer contained 

biofilms and the surrounding media.  The bottom layer contained channels covered by a 

thin PDMS membrane and filled with liquid, to which pressure was applied for hydraulic 

actuation.  In the valve area, this pressure deformed the membrane and pressed it against 

the rounded ceiling of the top channel, thereby closing the valve (Figure 4.1d).  A three-

dimensional representation of this platform is also presented in Figure 4.2.   
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Figure 4.2.  Three-dimensional representation of the assembled platform in the biofilm growth configuration 

(corresponding to Figure 4.1a).  Pressure applied to Control Channel #2 closes the corresponding valve and 

prevents flow into the side channel.  The valve regulated by an unpressurized Control Channel #1 remains open, 

allowing biofilm growth in the central channel where there is flow.   

4.1.2 Design Consideration: Channel Depth and Shear Stress on Biofilms 

The amount of membrane deflection of a PDMS valve relies on a variety of 

factors, including the channel dimensions, the PDMS thickness, and the pressure applied 

[110].  The maximum deflection of a push-up-style valve is typically no more than 60 µm 

[110].  The channel geometry, including its depth, is directly related to shear stress; the 

shear stress in turn affects biofilm growth properties, such as thickness and structure [32, 

36, 116].  The relationship between channel geometry, flow rate, and shear stress in the 

microfluidic device can be expressed as 

  
   

 [      ] 
   

(4.1) 

where Q is the flow rate, µ is the fluid viscosity, W is the channel width, δ is the channel 

height, and L is the biofilm thickness at time t.  In the extreme case of no biofilm, the 

shear at the wall would be 
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(4.2) 

In order to more closely follow device parameters shown to create functional 

push-up valves in literature [110], the final device was designed with channel widths (W) 

of 350 µm.  Aiming to obtain biofilms that could be compared to the biofilms formed in 

the previous work presented in Chapters 2 and 3, the final device used a 100 µm-deep 

channel for biofilm growth.  Since the channel geometry has a large influence on the 

shear rate, as shown in Equation 4.2, the volumetric flow rate was adjusted in order to 

obtain the same shear rate as in the 500 µm-wide, first-generation microfluidic platform.  

The flow rate that was used, 7.5 µL/hr, combined with a 100 µm x 350 µm cross-

sectional area created an average flow velocity of 0.06 mm/s and a shear rate only 7% 

larger than that in the previous work.  

While a 100 µm channel depth was desired for biofilm growth, the integrated 

valves still required a channel less than 60 µm in depth.  Consequently, it was necessary 

to design a compromise between the valve and biofilm growth depth requirements.  The 

incorporation of these design constraints into the microfluidic platform is shown in 

Figure 4.1c, d.  In literature, the control channel is typically the top layer in the PDMS 

stack, and a PDMS membrane is spun on-top of the fluidic channel [108-110].  However, 

it is difficult to spin a uniform PDMS membrane on-top of a structure with large 

variations in topography, such as the multi-depth microfluidic mold required for the 

valved biofilm growth channel.  Since a uniform membrane can be obtained by spinning 

PDMS on top of a shallow, single-depth mold such as that for the control channel, the 

final device featured the control channel as the bottom-most layer.  The top layer of 

PDMS contained channels that were deep except in the locations to be sealed by valves.  
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In the valving areas, the channel profile was shallow and rounded, allowing for more 

complete sealing than a square profile.   

While literature indicates that a channel as deep as 60 µm can be sealed with a 

push-up valve, the shallow valving areas of the top layer of PDMS were designed to have 

a maximum depth (at the apex of the arc-shaped cross section) of approximately 35 µm.  

Designing a shallower channel than the hypothetical maximum provided a safety factor to 

ensure full sealing, with the additional possibility of lowering the required actuation 

pressure.  Minimizing the pressure required to deflect the membrane and seal the fluidic 

channel can also minimize the risk of rupturing the membrane and disabling the device.  

4.1.3 Design Considerations: Depletion of Oxygen and Nutrients Along Channel 

An important consideration for this device was maintaining biofilm uniformity 

along the channel.  While no clear dependence of biofilm growth on location within the 

channel was observed in previous work, it was considered possible that molecules 

essential for efficient biofilm growth may be depleted by the time fluid reached the 

biofilm closest to the channel outlet.  An assessment of the likelihood of depletion was 

performed considering both oxygen and available carbon sources for bacterial 

metabolism.   

Bacterial growth is highly dependent on the available carbon sources.  As Luria 

Bertani (LB) growth medium does not contain glucose, cultures grown in LB utilize 

amino acids as carbon sources [150].  In this work, growth media was introduced at a 

volumetric flow rate of 7.5 µL/hr, effectively refilling the channel with fresh growth 

media every 6 minutes.  As growth media was introduced faster than the ~20 minute 

doubling time of E. coli in LB, it was also assumed that the biofilm culture as a whole 
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was not restricted by carbon source availability.  While nutrient starvation was expected 

to exist within the biofilm structure, this may be attributed to diffusion, consumption, and 

degradation as a function of the biofilm itself and not of the reactor.   

In order to evaluate the potential for oxygen depletion within the microfluidic 

channel, a basic analysis of oxygen consumption and transport via convection and 

diffusion was performed.  The elements contributing to changes in oxygen concentration 

in the microfluidic biofilm growth reactor, as considered in this analysis, are outlined in 

Figure 4.3.   

 

Figure 4.3. Conceptual model of oxygen transport in microfluidic biofilm reactor.  This simplified model 

includes valve-less geometry and does not account for effects on changes in oxygen transport and reaction rates 

due to biofilm growth. 

Oxygen sources include dissolved gas in the growth media and environmental oxygen 

that diffuses through the PDMS and into the microfluidic channel.  Oxygen is consumed 

by the bacteria, dependent on their metabolic state; unconsumed oxygen exits the channel 

with waste.   

In the microfluidic biofilm growth reactor, oxygen is dissolved in the LB injected 

into the system.  A 1 L solution of LB typically contains 10 g tryptone, 5 g yeast extract, 
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and 10 g NaCl.  The salts and organic compounds in LB alter the solubility of oxygen in 

the water-based solution.  The change in the Bunsen coefficient can be derived from a 

modification of the Sechenov equation [151]: 

   
  

 
 ∑   

 

 
    

  ∑        

 

   

 

   

    
(4.3) 

Here, α is the Bunsen coefficient for the solute (oxygen) in LB and α0 is the Bunsen 

coefficient for oxygen in water at 35 °C.  Hi is a temperature-dependent parameter 

specific to the gas and the type of the i-th ionic species dissolved; zi and ci represent the 

charge and molar concentration of the i-th ionic species, respectively.  Similarly, Ki is a 

constant specific to the gas and the i-th organic compound dissolved in the solution, and 

corg,i is the molar concentration of the i-th organic compound.  Using the modified 

Sechenov equation, the oxygen concentration in LB at 35 °C was estimated to be 6.6 

mg/L or 0.206 mol/m
3
, based on  

  

 
      .  However, in practice, the composition of 

LB can vary between batches and experiments dependent on factors such as autoclave 

time and age of the solution [150].   

In addition to oxygen dissolved in the growth media, oxygen also can diffuse into 

the microfluidic channel through the PDMS, well known for its high gas permeability.  

The rate of oxygen diffusion into the channel is dependent on the difference in oxygen 

concentrations between atmospheric air and in the interior of the microfluidic channel.  

PDMS also has its own oxygen saturation limit, reported as 1.69 mol/m
3
 [152, 153].   

While experiments were not performed to obtain an oxygen consumption value 

specific to the bacteria and system used here, E. coli K-12 consumption of oxygen has 

been reported as approximately 4.31x10−20 mol/cell/s [154].  At the start of an 
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experiment, with a bacterial inoculum of OD600 0.25 (approximately 1.25x10
8
 cfu/mL), 

oxygen is consumed at a rate of 4.6x10−12
 mmol/s.  As the bacteria within the biofilm 

divide, more oxygen will be consumed throughout the channel.   

A basic simulation was performed in COMSOL Multiphysics 4.1 to evaluate 

possible depletion given higher rates of oxygen consumption.  The model included 

dissolved oxygen in the growth media entering the system, oxygen from ambient air 

diffusing through the PDMS and into the media, and a flux of oxygen out of the channel 

floor representing bacterial metabolic activity.  The Laminar Flow physics mode was 

coupled to the Transport of Diluted Species physics mode in the subdomain representing 

the channel, and a separate Transport of Diluted Species physics mode was applied to the 

subdomain representing the PDMS.   

Diffusion of oxygen into the PDMS from ambient air was modeled using a stiff-

spring boundary condition [153], incorporating the partition coefficient into the term for 

oxygen flux at the air-PDMS boundary.  The diffusive flux of oxygen from air into the 

PDMS can be expressed as  

   
                        (4.4) 

where M is the stiff spring velocity, KP,air is the partition coefficient, Cair is the 

constant concentration of oxygen in ambient air, and cPDMS is the oxygen concentration 

on the PDMS side of the interface.  Oxygen diffusion from the PDMS into the media was 

modeled similarly to the PDMS-air boundary, with the diffusive flux of oxygen from the 

PDMS into the media expressed as  

   
                           (4.5) 
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where M is the stiff spring velocity, KP,PDMS is the partition coefficient, and cPDMS and 

cmedia are the oxygen concentrations on the PDMS and media sides of the interface, 

respectively.  Concentrations within the PDMS and the media were modeled using 

separate Transport of Diluted Species physics modes linked through the flux terms at the 

boundary between the PDMS and media.   

The consumption of oxygen by the biofilm was calculated assuming the bottom of 

the channel is completely covered with a monolayer of E. coli cells, each with an 

assumed rectangular footprint of 1 µm x 2 µm, resulting in a cell density, ρcell, of 

5x10
11

 cells/m
2
.  This value corresponds to the same number of cells contained in a 

suspension of OD600 10 filling the entire 0.84 µL channel volume.  The boundary flux of 

oxygen produced by biofilm metabolism can be expressed as  

   
    

         (4.6) 

where VO2 is the bacterial rate of oxygen consumption noted above.  While the 

consumption can be more accurately represented by Monod kinetics, allowing the rate to 

vary with oxygen concentration, the use of the maximum consumption rate was selected 

as representative of a condition most likely to induce oxygen depletion.  Additionally, 

while the biofilms formed within microfluidics are typically thicker than a monolayer of 

E. coli, they do not cover the entire channel floor.  Biofilms formed experimentally are 

also expected to have a lower average metabolic rate due to the inclusion of dead cells 

and extracellular matrix components within the biofilm structure.   

Flow within the microfluidic channel was modeled with the Laminar Flow 

physics mode, using the density and viscosity of water at 35 °C.  The boundary condition 

at the inlet was a normal inflow velocity of 0.06 mm/s, calculated using the channel 
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dimensions and volumetric flow rate of 7.5 µL/hr used in this work.  Within the 

Transport of Diluted Species physics mode, the boundary at the inlet was set to the 

calculated saturation concentration of oxygen in growth media, Cmedia.  

Relevant parameters for the simulation are summarized in Table 4.1; Figure 

4.44.4 shows the simulated media oxygen concentration near the channel inlet.   

Table 4.1. Parameters used for COMSOL simulation of oxygen transport. 

Parameter Value Source Description 

M 1x10
3
 m/s - Stiff spring velocity 

Dmedia 2.5x10
-9

 m
2
/s [153] Diffusion coefficient, oxygen in growth media 

DPDMS 3.4x10
-9

 m
2
/s [152] Diffusion coefficient, oxygen in PDMS 

Cmedia 0.206 mol/m
3
 Calculation Saturation concentration of oxygen in growth 

media 

CPDMS 1.69 mol/m
3
 [153] Saturation concentration of oxygen in PDMS 

Cair 8.27 mol/m
3
 Calculation Concentration of oxygen in 35 °C air 

KP,air 8.20 Calculation Partition coefficient, air/PDMS 

KP,PDMS 4.89 Calculation Partition coefficient, PDMS/growth media 

VO2 4.31x10
−20

 mol/cell/s [154] Rate of E. coli K-12 consumption of oxygen 

ρcell 5x10
11

 cells/m
2
 Calculation Area density of cells on bottom of channel 

U0 6.0x10
-5

 m/s Calculation Normal inflow velocity with 7.5 µL/hr flow 

rate 

L 2.4 cm - Channel length 

w 350 µm - Channel width 

h 100 µm - Channel height 

Q 7.5 µL/hr - Volumetric flow rate  

t 4.9 mm - PDMS thickness 
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Figure 4.4. Detail of oxygen concentration within growth media near the channel inlet from steady state 

COMSOL simulation of oxygen transport in the microfluidic system.  The simulation was based on the 

conceptual model of Figure 4.3 and used the parameters in Table 4.1.   

These results showed that the bacterial oxygen consumption rate is not large 

enough to fully deplete the media.  Close to the inlet, the primary source of oxygen for 

bacterial consumption is convection of oxygen dissolved in the growth media.  After an 

initial entry length, oxygen diffusion through the PDMS channel ceiling supplements 

oxygen convection [153].  The diffusive transport of oxygen allows the concentration 

along the bottom of the channel to approach a constant value of 0.2022 mol/m
3
, only 

1.8% less than the saturation concentration of oxygen in LB media.  Although oxygen in 

the media is consumed, it is at a low rate and has a minimal impact on the bulk oxygen 

concentration.   

While the above simulation provides general insight into the dynamics of 

microfluidic biofilm reactors, the biofilm growth rate and composition must be more 
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thoroughly accounted for, as in mathematical models presented in literature [32, 155], for 

a true representation of oxygen transport and reaction in the system.  For example, a 

biofilm whose biomass contains both live and dead bacteria will have a lower effective 

metabolic rate than a biofilm composed entirely of live bacteria.  Diffusion through the 

biofilm matrix itself must also be accounted for, as bacteria at different depths experience 

dissimilar oxygen and nutrient environments and accordingly exhibit different growth 

rates.  Growth of the biofilm also physically alters the system, effectively reducing the 

hydraulic diameter.  As this device was designed for end-point characterization of mature 

biofilms, the use of the above simplified model to verify sufficient oxygen throughout the 

channel is adequate for the purposes of this work.   

4.2 Fabrication 

4.2.1 Overview 

The channel profiles in both PDMS layers were created using photoresist molds 

patterned photolithographically on a silicon wafer.  Schematics of the device layout 

indicating the mask layers used are shown in Figure 4.5.  The fluidic channels were 

350 µm wide, and the central channel through which biofilms were grown was 24 mm 

long.   
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Figure 4.5. Mask layout for PDMS molds.  Pink channels denote the top, biofilm-containing layer, and green 

channels denote the bottom, hydraulic control layer.  Valve locations are indicated by black squares at the 

intersections of the pink and green channels.  Drawn to scale.  

An overview of the entire fabrication process is given in Table 4.2; details of key 

fabrication parameters and intermediate steps are presented in the subsequent section.  

Briefly, to form a mold for the biofilm growth and valving layer, first a thin photoresist 

(AZ 9260) was patterned and rounded to form the shallow areas for valving.  While a 

negative-tone photoresist could be used in place of the AZ 9260, it cannot produce the 

rounded profile needed for valve sealing.  A thicker photoresist (Microchem KMPR 

1050) was patterned on top of the AZ 9260 to form the areas for biofilm growth.  This 

structure was then used as a mold to generate the inverse of this pattern in PDMS.  The 

mold for the other PDMS layer, providing control of the valves, was formed by a single 

layer of KMPR 1050.  The two PDMS layers were stacked on top of each other and 

bonded together, then bonded to a coverslip to generate the entire structure.  
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Table 4.2. Process flow of the PDMS molding and assembly process. 

Step Cross-Sectional View 

1) Photolithography and rounding of thin positive 

photoresist (AZ 9260).  

 

2) Photolithography of thick, negative photoresist (KMPR 

1050) for biofilm growth areas.  

 

3) PDMS is poured onto the 2-depth fluidic mold.  

 

4) PDMS is peeled off the mold.  

 

5) In parallel, a separate mold for the control channel is 

fabricated from KMPR 1050.  

 

6) PDMS is spun onto the control channel mold and cured.  

 

7) Peeled 2-depth fluidic PDMS is aligned to and placed 

on top of the spun PDMS, creating a two layer PDMS 

stack on top of the control channel mold.  After curing the 

layers together, the PDMS stack can be peeled off and 

bonded to a glass substrate.   

 

 

4.2.2 Fluidic Mold Fabrication 

4.2.2.1 AZ 9260 Patterning and Hardbake 

The standard AZ 9260 patterning and rounding process involved spinning, 

developing, and exposing the resist to obtain the overall pattern, then baking it above its 

reflow temperature in order to form rounded structures.  In developing the fabrication 
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process, it was found that the first layer of photoresist patterned, AZ 9260, was very 

sensitive to subsequent patterning of the thicker layer of photoresist, KMPR 1050, on top 

of it.  The AZ 9260 typically dissolved during the KMPR 1050 development in SU-8 

developer.  A hardbake was implemented to counteract this to reduce solubility by 

exposing the photoresist to higher temperatures and longer periods of time than imposed 

by standard AZ 9260 rounding procedures (2 minutes at 120 °C, as described in [156, 

157]).  However, AZ 9260 would often crack during either the hardbake, one of the 

KMPR bakes, or the exposure to SU-8 developer.  While the general shape of the 

AZ 9260 would remain, the cracks rendered the pattern unusable as a PDMS mold.  Since 

PDMS is viscous before it is cured, it fills any cracks and sticks within the cracks during 

curing.  When the PDMS was peeled off the wafer, the cracked AZ 9260 was peeled off 

along with the PDMS, as shown in Figure 4.6.   

 

Figure 4.6. Photograph of PDMS molded with the 2-depth AZ 9260/KMPR mold.  Brown squares of cracked 

AZ 9260, indicated by the arrow, delaminated off the wafer and became stuck in the channels in the PDMS.  The 

AZ 9260 residues could not be removed from the PDMS without severely damaging the microfluidic channel.  

Initially, hardbake parameters were altered to investigate a potential solution to 

the cracking, as baking positive photoresist too quickly or at too high a temperature may 

produce temperature gradients that can crack the resist.  However, the resist must be 

baked to a sufficient degree to prevent dissolution in SU-8 developer.  Hardbake 

parameters that reliably produced patterned AZ 9260 without cracks were identified 

Delaminated 
AZ9260 
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through iterative, chip-scale experiments.  Variables altered during this process include 

bake temperature, bake time, temperature ramping up or down from the bake, and the 

presence of a cover (inverted glass petri dish creating a chamber) over the chip.  Success 

of a hardbake was evaluated by immersing a patterned chip in SU-8 developer for 

5 minutes, with agitation.  Table 4.3 provides examples of the parameters altered and 

corresponding photographs of AZ 9260 test patterns throughout the process.    
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Table 4.3. Parameters varied in AZ 9260 hardbake characterization, including temperature, time, and whether 

the chip was covered during the bake.  Corresponding photographs were obtained after the hardbake and after 

immersing the chip in SU-8 developer for 5 minutes.  The red box highlights parameters used in further process 

development. 

Temperature (°C) Time (min) Covered After Hardbake After 5 min  

SU-8 Developer 

160 60 No 

 

(dissolved) 

160 60 Yes 

 

(dissolved) 

170 20 Yes 

  

175 10 Yes 

  

175 15 No 

 

(dissolved) 

175 15 Yes 

   

175 20 Yes 
 

 

 

 

By evaluating the yield of intact test structures after full processing, the bake 

parameters that produce the most reliable results were identified.  The patterned wafer 

was placed on a room temperature hotplate, and the wafer was covered with an upside-
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down Pyrex® petri dish.  The wafer and petri dish were placed off-center on the hotplate 

surface so that a small section of the dish protruded from the edge of the hotplate, 

providing an opportunity for solvent evaporation.  The hotplate was then allowed to heat 

up to 175 °C for approximately 8 minutes, held at that temperature for 20 minutes, then 

allowed to cool naturally to room temperature, at which point the cover and wafer were 

removed.  However, even without cracks after the hardbake, subsequent exposure to SU-

8 developer still damaged the patterned AZ 9260, as in the last row of Table 4.3, with a 

yield of approximately 50%.  The introduction of a passivation layer improved yield by 

protecting the AZ9260 from SU-8 developer exposure, as discussed in the next section. 

The process parameters for the AZ 9260 processing and hardbake that were used 

in all of the following work are presented in Table 4.4.  

Table 4.4. Table of processing steps and parameters used for AZ 9260 lithography, rounding, and hardbaking. 

Step Parameters Description 

Spin HMDS 3000 rpm, 30 s Adhesion layer deposited immediately on 

dehydrated wafer 

Bake 150 °C, 3 min HMDS activation, solvent evaporation 

Spin 1
st
 AZ 9260 Layer 2000 RPM 

Ramp: 2 s 

Time: 60 s 

Spin dispense; creates film ~11 µm 

Bake Room temperature, 15 min 

60 °C, 5 min 

100 °C, 5 min 

Evaporate solvent 

Spin 2
nd

 AZ 9260 Layer 1500 RPM 

Ramp: 2 s 

Time: 60 s 

Spin dispense; Creates final film 

thickness ~ 24 µm 

Bake Room temperature, 15 min 

60 °C, 5 min 

100 °C, 20 min 

Evaporate solvent 

Rehydration >24 hours Rehydration time based on humidity 

Exposure 600 mJ/cm
2
 @ 365 nm Expose with Mask #3 (Appendix A) in 

intervals to avoid bubbles 

Develop 4:1 AZ400k, 10 min 

 

May rinse off residues with additional dip 

in fresh 4:1 AZ400k 

Hardbake 175 °C, 20 min 

Default hotplate ramp to bake 

temperature, natural cooldown.   

Solvent evaporation and profile rounding.  

Cover wafer with upside-down petri dish 

protruding from hotplate.  
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4.2.2.2 ALD Passivation of AZ 9260 

As an alternative to simply patterning the two photoresists one after the other, 

passivation of the first layer was investigated.  There are multiple methods used in 

literature for passivation of photoresist, including creating a crosslinked photoresist 

“skin” using UV ozone or chemical treatments [158, 159].  UV-ozone curing was 

attempted using a UVOCS ® T10X10 UV Ozone Cleaner and the parameters listed 

below in Table 4.5.  However, this treatment did not significantly decrease the amount of 

AZ 9260 degradation.   

Table 4.5. UV-ozone curing parameters and corresponding images of AZ 9260 structures after the hardbake 

(before UV-ozone exposure) and after testing stability by exposure to SU-8 developer.  UV-ozone exposure was 

performed in multiple steps to prevent overheating and bubbling of the resist; chips were exposed to 1 minute of 

UV-ozone, then allowed to cool for 1 minute. 

Total UV-Ozone 

Exposure Time 
After Hardbake 

After 2 min SU-8 

Developer 

20 min 

  

30 min 

  

In contrast to altering the photoresist itself to increase its chemical resistivity, 

others have used metal as a thin barrier layer in multiple process steps using the same 

photoresist [160].  Additionally, our group has demonstrated the passivation of a 

biosensor from biological media using atomic layer deposition (ALD) of aluminum oxide 

[113].  ALD materials deposition is suited for passivation of photoresist structures not 

only because it is thin and conformal, preserving the rounded shape of AZ 9260, but also 

allows for low temperature deposition, preventing thermal stresses on the resist.   
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ALD deposition of Al2O3 over patterned, rounded AZ 9260 test structures was 

deposited using a 150 °C process in a Beneq TFS 500 as in previous work [113].  The 

passivation ability of the ALD Al2O3 was characterized using two different layer 

thicknesses – 45 nm and 95 nm.  The quality of the passivation was evaluated by 

immersing chips with patterned AZ 9260 in SU-8 developer after passivation.  As shown 

in Table 4.6 below, 45 nm of Al2O3 still appeared to be insufficient to passivate against 

SU-8 developer; 95 nm of Al2O3 appeared to passivate the majority of the test chips 

adequately.   

Table 4.6. Chart depicting different squares on different test chips after deposition of the Al2O3 layer, and after 

immersing the chip in SU-8 developer for the time interval specified in the top row.  (a) Chips with 45 nm of 

Al2O3 passivation; (b) Chips with 95 nm of Al2O3 passivation. 

 ALD Al2O3 

Thickness 

After ALD  6 min SU-8 

Developer 

8 min SU-8 

Developer 

20 min SU-8 

Developer 

Yield 

 

45 nm 
    

8/12 
 

  

(dissolved) 

 

 

95 nm     46/48 

 

    
 

When the Al2O3 failed, as in the 45 nm cases, the AZ 9260 structures completely 

dissolved, occasionally leaving residue on the wafer.  The two failed patterned structures 
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seen in the 95 nm Al2O3 samples still possessed intact patterns, albeit with cracks.  

However, since the 20 minute immersion period used is much longer than the actual 5-10 

minute development needed for 100 µm thick KMPR, a higher yield in fabricating the 

multi-depth mold was expected.  For the remainder of this work, patterned and hardbaked 

AZ 9260 was protected by an ALD Al2O3 passivation layer deposited at 150 °C with a 

target thickness of 95 nm. 

4.2.2.3 KMPR Patterning 

Using the parameters for the AZ 9260 lithography, hardbake, and passivation with 

ALD Al2O3 as presented above, the parameters for the KMPR 1050 processing were 

finalized.  Detailed procedures for this process are presented in Table 4.7.  

Table 4.7. Table of processing steps and parameters used for KMPR 1050 lithography on top of patterned and 

passivated AZ9260. 

Step Parameters Description 

Bake 150 °C, 5 min Dehydrate wafer surface  

Spin KMPR1050 500 RPM 

Ramp: 4 s 

Time: 10 s 

1000 RPM 

Ramp: 3 s 

Time: 30 s 

Creates film ~100 µm 

Pre-exposure Bake 95 °C, 25 min Evaporate solvent 

Expose 1000 mJ/cm
2
 @ 365 nm Expose with Mask #4 

(Appendix A) 

Post-exposure Bake 95 °C, 6 min Cross-links photoresist 

Develop SU-8 Developer, 6 min Isopropanol rinse after develop 

complete 

A summary of the entire fabrication process for the fluidic mold is presented in Figure 

4.7 along with representative photographs taken after each of the steps was performed.   
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Figure 4.7. Cross-sectional schematics and corresponding photographs of fluidic mold fabrication: a) patterning 

of AZ 9260 positive resist, b) resist rounding and hardbake, c) passivation with ALD Al2O3, and d) KMPR 1050 

patterning.  

4.2.3 Hydraulic Control Mold Fabrication 

The mold for the bottom layer of PDMS containing the valve control channels 

was fabricated from a single layer of Microchem KMPR 1050 patterned on a silicon 

wafer.  The thickness of the resist was not as critical as the thicknesses in the fluidic 

mold; the most critical feature was the PDMS membrane spun on top of the control mold, 

and given control of the PDMS thickness on top of the control mold, the thickness of the 

mold itself was less important.  A KMPR 1050 thickness of 40 µm produced membranes 

of appropriate thickness using the PDMS spin procedure described later in this chapter.  

The final process parameters for the KMPR 1050 processing for the hydraulic control 

mold are presented in Table 4.8.  
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Table 4.8. Table of processing steps and parameters used for KMPR 1050 lithography to create hydraulic 

control channels. 

Step Parameters Description 

Bake 200 °C, 10 min Dehydrate wafer surface  

Spin KMPR1050 500 RPM 

Ramp: 4 s 

Time: 10 s 

2000 RPM 

Ramp: 3 s 

Time: 30 s 

Creates film ~40 µm 

Pre-exposure Bake 95 °C, 20 min Evaporate solvent 

Expose 1000 mJ/cm
2
 @ 365 nm Expose with Mask #5 

(Appendix A) 

Post-exposure Bake 95 °C, 5 min Cross-links photoresist 

Develop SU-8 Developer, 5 min Isopropanol rinse after develop 

complete 

 

4.2.4 PDMS Layer Fabrication and Bonding 

Prior to pouring or spinning PDMS onto a mold wafer, the mold must be treated 

with a release agent to prevent PDMS adhesion to the features on the wafer, or breakage 

of the entire wafer while attempting to remove the PDMS.  The first release agent tried 

involved vapor phase deposition of a chlorosilane layer on the wafer surface by exposure 

to trimethylchlorosilane in a vacuum dessicator.  Upon exposure of the vapor to silicon 

dioxide on the wafer, silanol groups bond to the wafer surface.  The resulting coating is 

very stable and reduces the surface energy, allowing PDMS to be peeled from the mold 

during subsequent steps.  While this process has been performed previously within the 

MEMS Sensors and Actuators Laboratory at the University of Maryland [157], vapor 

phase silanization did not repeatably create an adequate release layer for this device, most 

often observed by permanent adhesion of PDMS to the Al2O3-passivated, multi-depth 

mold.  After accounting for variables such as silanization time and age of the 

trimethylchlorosilane solution, environmental factors were most likely responsible for the 

poor PDMS release.  Experimentation with release layers was performed during high 



116 

 

humidity weeks in the spring; however, silanization is very humidity sensitive, as silanes 

react readily with water.  While this may not be a critical factor for silicon silanization, 

Al2O3 silanization may be more sensitive and therefore did not succeed even when molds 

with silicon substrates were silanized in the same environmental conditions.  It is likely 

that molecular water on the Al2O3 surface reacts with the silane vapor before the hydroxyl 

groups on the Al2O3 surface react with the vapor.  Although standard silanization is an 

effective procedure for most PDMS molds, it was necessary to identify an alternative less 

sensitive to ambient humidity and more compatible with Al2O3.   

Detergent treatments have also been used as a surface treatment to promote 

PDMS release [161].  This process was adapted as a replacement for silanization to 

prevent  PDMS adhesion to patterned mold wafers in this work.  Both molds were treated 

with an aqueous solution of Alconox® powdered precision cleaner prior to PDMS 

processing to prevent PDMS adhesion to the mold surface.  Wafers were placed in a petri 

dish with 0.75% Alconox® detergent dissolved in deionized (DI) water for 2 minutes, 

removed, and allowed to air dry.   

PDMS for the control channel layer was mixed in a ratio of 20:1 (base : curing 

agent) and degassed in a vacuum dessicator.  The mixture was spun on top of the 

prepared control channel mold using a spin dispense, then spinning it at 1050 rpm for 

90 seconds.  The wafer was placed in a furnace programmed to ramp to 60 °C in 

5 minutes, then hold at 60 °C for 15 minutes.   

PMDS for the fluidic channel layer was mixed in a ratio of 5:1 (base : curing 

agent) and degassed.  The mixture was poured on top of the prepared fluidic channel 

mold, and the wafer placed in a furnace programmed to ramp to 60 °C in 5 minutes, then 
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hold at 60 °C for 15 minutes.  After curing, the PDMS was peeled off of the fluidic 

channel, and each chip was cut out of the wafer-sized PDMS piece using a knife.  A 

2 mm dermatological punch was used to punch holes at the inlets and outlets for fluidic 

tubing.   

After both PDMS layers were cured, each fluidic channel PDMS chip was aligned 

to and placed on top of the control channel mold with the spun PDMS cured on top.  A 

microscope was used to aid in alignment of each chip to the pattern on the control 

channel mold wafer.  The PDMS stack on top of the control channel mold wafer was 

placed in a furnace programmed to ramp to 80 °C in 10 minutes, then hold at 80 °C for 

3 hours.  The different base : curing agent ratios (20:1 in the control channel layer, 5:1 in 

the fluidic channel layer) create an excess of one of the components in each layer.  

Excess molecules are believed to interact with each other at the interface between the two 

layers, encouraging formation of a PDMS-PDMS bond [162].  After cooling the stack to 

room temperature, a knife was used to cut around the outline of each chip.  The entire 

PDMS stack for each chip was then carefully peeled off of the control channel mold.  A 

2 mm dermatological punch was used to punch holes at the inlets for the pressurized 

nitrogen used to control the valve actuation.   

After each of the PDMS chips on the wafer had been removed from the mold, 

they were permanently bonded to glass coverslips using oxygen plasma bonding.  Each 

PDMS chip and coverslip was placed in the chamber of a March Jupiter III O2 Plasma 

System with the surfaces to be bonded together oriented toward the plasma source.  In the 

final device fabrication process, surfaces were exposed to oxygen plasma for 30 seconds 

at 20 W and approximately 450 mTorr.  The coverslip was removed from the chamber 



118 

 

and the PDMS stack carefully placed on top.  Any bubbles were pressed out of the 

interface between the PDMS and glass as soon as possible after contact.  The plasma 

bond was strengthened by baking the devices in a furnace at 60 °C for 3 hours.  The 

entire PDMS layer fabrication and bonding procedure is detailed in Table 4.9.  

Table 4.9. Process flow of the final PDMS molding and assembly process. 

Step Cross-Sectional View 

1) PDMS is poured onto the 2-depth fluidic mold. 

 

2) After curing, PDMS is peeled off the mold. 

 

3) PDMS is spun onto a separate mold for the control 

channel, and cured. 

 

4) The peeled multi-depth fluidic PDMS is aligned to and 

placed on top of the spun PDMS. 

 

5) After curing the two layers together, the PDMS stack is 

peeled off of the control channel mold. 

 

6) The PDMS stack is permanently bonded to a glass 

coverslip using oxygen plasma bonding. 
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Fluidic connections were made to the device as described in Chapter 2.  Holes 

were punched in the PDMS with a 0.2 mm dermatological punch.  Barbed tubing 

connectors (1/16”) were inserted into the resulting holes and connected with Tygon® 

tubing to either a syringe pump operating in infusion mode, or a microcentrifuge tube 

serving as a waste reservoir.   

4.3 Device Preparation and Testing 

4.3.1 Device Preparation 

When pressurized nitrogen was applied to an empty, non-liquid-filled control 

channel, the nitrogen gas diffused through the thin PDMS membrane at the valves and 

emerged in the fluidic channel as a bubble, interrupting flow and delaminating adherent 

biofilms.  Therefore, the first step in preparing the device for experimentation was 

conversion of the pneumatic channels into hydraulic channels by pre-filling them with DI 

water mixed with a drop of standard food coloring.  Tubing connected to the control 

channel inlets was coupled to a filled syringe dispensing dyed DI water at a flow rate of 

20 µL/hr.  Injection of the water forces gas in the control channel to diffuse through the 

membrane as it is replaced by the liquid.  As the control channels lack outlets, injection 

of dyed water was stopped when it was visually confirmed to have reached the ends of 

the channels.  The tubing connected to the control channels was subsequently connected 

to a tank of controlled, pressurized nitrogen.  To close the valves, a nitrogen pressure of 

15 psi was applied to the hydraulic channel, and the valves were opened by releasing this 

pressure. 
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4.3.2 Operation: Biofilm Growth 

Channels were sterilized using 70% ethanol at a flow rate of 20 µL/hr to introduce 

into the channels.  After rinsing the device with DI water at 20 µL/hr, the device was set 

to the biofilm growth configuration as in Figure 4.1a.  The E. coli strains used were BL21 

pGFP and K-12 MG1655.  The former was used for rapid characterization of biofilms 

formed, since it constitutively expresses green fluorescent protein (GFP) so staining was 

not required for fluorescence microscopy.  Wild type E. coli MG1655 was used as a 

model of wild type biofilm dynamics, and can only be imaged in conjunction with 

fluorescent stains.  All biofilms were initiated from cultures grown overnight at 250 rpm 

and 37 °C and diluted to an OD600 of 0.25 in LB media.  Suspensions were injected into 

the center channel of a sterilized device just until it was filled.  The suspension was 

incubated in the device under static conditions for 2 hours in a 37 °C incubator to allow 

bacterial adhesion to the PDMS channel floor.  With the device remaining in the 

incubator, flow of sterile LB growth media at 7.5 µL/hr was initiated after the incubation 

period and applied continuously for the set time period of biofilm growth. 

4.3.3 Operation: Biofilm Segmentation 

In the presented biofilm segmentation studies, biofilms were grown as previously 

described.  After the set period of biofilm growth time, the valve orientation was 

switched by releasing the pressure from the valves blocking the side channels, and 

applying pressure to the channels controlling the valves in the center channel.  Each 

section could then be exposed to treatment as shown in the schematic in Figure 4.1b; in 

this demonstration of the device’s applicability to biofilm studies, two sections were 

exposed to two different SDS concentrations (0.1% and 0.2% in LB media) at 7.5 µL/hr 
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for one hour, and one section was maintained as a control via exposure to LB media at 

7.5 µL/hr for one hour.   

4.3.4 Staining, Confocal Microscopy, Image Analysis 

Biofilms were stained, imaged, and analyzed based on the procedures developed 

in Chapters 2 and 3 [118, 119].  After biofilm formation or treatment, biofilms were 

rinsed with DI water then stained with the Filmtracer
TM

 LIVE/DEAD® Biofilm Viability 

Kit (Molecular Probes, Inc.), using equal proportions of SYTO9 and propidium iodide 

introduced into the biofilm-containing channels at a flow rate of 7.5 µL/hr.  The biofilms 

were rinsed again with DI water and imaged using confocal microscopy (Zeiss LSM 

710).  One location was imaged in each of the three segments per device; images were 

obtained close to the center point of each segment, approximately 4 mm away from the 

valve areas.  Confocal image stacks were quantitatively analyzed using COMSTAT [95], 

and visualized using Imaris (Bitplane, Inc.).  JMP® statistical analysis software was used 

for all statistical calculations.  

4.4 Results and Discussion 

4.4.1 Fabrication of Multiple Channel Profiles 

Deposition of a physical and chemical barrier via ALD proved a reliable method 

for patterning multiple resist formulations and profiles.  Using the methods described 

above, a 100% yield of intact AZ 9260 was obtained repeatably.  Successful patterning of 

the two photoresists to obtain the desired profiles is depicted by the profilometry data and 

scanning electron microscopy (SEM) image in Figure 4.8a-b.  A photograph of the 

finished mold is also included in Figure 4.8c.   
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Figure 4.8. a) Contact profilometry scan of mold at valve region, verifying the presence of the desired profiles.  

In the measured region, the rounded AZ 9260 section had a peak height of 36 µm, and the KMPR 1050 channels 

had a depth of approximately 97 µm.  b) SEM image of multi-depth structure created from two photoresists.  

Note the large difference in aspect ratios minimizes the appearance of curvature in the shallow section. c) 

Photograph of multi-depth mold.   

In order to create the device presented here, a new technique for protecting 

photoresist from chemical attack by solvents was developed.  This enabled multi-depth, 

multi-profile microfluidic channels.  While this demonstration of the technique only 

employed two types of resist, a multitude of photoresists or other polymeric materials 

with different patterning capabilities or thicknesses may be used to create varied 

microchannel geometries.  Using ALD passivation allows researchers the freedom to use 

any polymeric materials regardless of compatibility.  As the body of research on ALD 

processing expands, there are an increasing number of methods for low-temperature 

deposition of a variety of materials [163, 164], which in turn may be used for passivating 
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polymers more sensitive to high temperatures.  The ability to deposit very thin layers of 

high quality material facilitates the creation of even finer passivated photoresist patterns 

than those demonstrated here (on the order of 100 µm).  The fabrication technology of 

ALD passivation of photoresist to create multi-depth, multi-profile microfluidics also can 

be applied to an even broader number of applications outside the field of bacterial 

biofilms.  Microfluidics with mixed profiles can be applied to the growing number of 

tissue culture studies in microenvironments.  Microfluidic channels can be created to 

mimic in vivo spaces where tissue might form or be implanted [165].  Channels featuring 

deliberately patterned obstacles to flow could contribute an additional tool for 

understanding shear environments around in vivo perturbations such as atherosclerotic 

lesions [166].  Multi-depth microfluidics would also be useful in hydrodynamic studies 

where the channel dimensions would affect the results.  For example, the presence of a 

“ceiling” above an electrochemical sensor in a microfluidic channel has been shown to 

affect the sensor output [167]; this phenomenon could be further investigated by 

evaluating sensor performance in channels of different depths.  While this could be 

accomplished in a series of devices, each with its own unique channel depth, using one 

device with multiple channels and sensors not only eliminates device-to-device 

variability, but is more efficient and streamlined for the researcher.   

4.4.2 Valve Functionality 

The functionality of the valves was confirmed by introducing flow of DI water 

dyed with food coloring, then activating and releasing valves to control flow localization.  

Sample results of two device assessment tests are presented in Figure 4.9 and Figure 

4.10.  In one test, shown in Figure 4.9, one set of valves was actuated to create one 
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central channel, and green-colored water was injected into the device.  The valve 

configuration and the resulting flow pattern are shown in Figure 4.9b.  The valve 

orientation was then reversed, segmenting the channel into three sections.  Two sections 

were rinsed with undyed water (Figure 4.9c), then filled with different colors of water 

(Figure 4.9d), while the first section was not rinsed and maintained as a control.   

  



125 

 

 
Figure 4.9. Photographs (left column) of the device taken at different stages over a several-hour testing period, 

and diagrams (right column) illustrating flow patterns and valve configurations, where solid black squares 

indicate closed valves. a) Filling the hydraulic control channels with red-dyed water, leaving the fluidic channels 

empty. b) Actuating one set of valves and creating flow through the center channel in the fluidic layer. c) 

Reversing valve orientation and rinsing out two of the three new channels with undyed DI water. d) Creating 

different flows in each of the three segmented channels.   

In a separate test (Figure 4.10), three different colors of water were used to 

simulate operation as a biofilm segmentation and testing device as postulated in Figure 

4.1a-b.  The use of dyed water also allowed for qualitative evaluation of leakage through 

valves between sections, as leaks became manifest by the mixing of colors.    
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Figure 4.10. Photographs of assembled devices with green water filling actuated control channels.  a) Device in 

biofilm growth orientation, with side channels blocked by closed valves.  Photograph corresponds to Figure 4.1a. 

b) Device in biofilm sectioning orientation, with side channels open and central channel sectioned by closed 

valves.  Photograph corresponds to Figure 4.1b.   

4.4.3 Biofilm Uniformity 

In order to use the device for biofilm studies with integrated controls, biofilms 

grown in the center channel must be uniform so that upon segmentation, the control 

section may be compared to the experimental sections in good faith knowing that prior to 

segmentation, all sections were comparable.  One concern was that the shallow valve 

areas might easily become clogged with biofilm, preventing further flow of growth media 

and biofilm growth beyond the clog.  However, this proved not to be the case, since 

biofilms preferentially did not grow in the valve area.  This is demonstrated by the 

images shown in Figure 4.11, where E. coli BL21 pGFP was grown in the center channel 

for 60 hours, and the control channels were filled with DI water and red food coloring, 

which has its own fluorescent signal.   
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a) b)  

   

c) 

 

Figure 4.11. Surface reconstruction of confocal microscopy of 60-hour E. coli BL21 pGFP biofilm within the 

microfluidic channel.  Bacteria showed only green fluorescence; red areas are residual red food coloring 

absorbed into PDMS or the air-colored water interface in the control channel.  The red food coloring is visible 

due to its intrinsic low-level fluorescence.  a) Top view b) Angled view from side, c) Schematic representation of 

confocal images in the context of the layered PDMS channels.  Hydraulic control channel is depicted as 

completely filled with red-dyed water, whereas during confocal microscopy the water receded toward the open 

fluidic ports, leaving behind fluorescent residue.  

The lack of bacterial growth within the valve area was most likely due to the 

increased amount of shear stress in the narrow parts of the channel at the transition 

between the KMPR 1050 and AZ 9260 sections of the channel mold.  The shear stress in 

the center of the valve region, where the channel was deepest at approximately 35 µm, is 

about 8-fold greater than the shear stress in the 100 µm-deep biofilm growth areas.   

Increased shear imposed on the biofilm can reduce its thickness and can inhibit overall 

growth.   

Having verified that biofilms could be grown without clogging the shallow valve 

areas, uniformity was verified by growing E. coli MG1655 biofilms in the central channel 

100 µm 100 µm 
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for 48 hours, then staining, imaging, and analyzing the biofilm in each of the three 

segments.  The segments were denoted as I, II, and III corresponding to the segment 

closest to the inlet, the middle segment, and segment closest to the outlet as indicated in 

Figure 4.12a.  Two of the devices, Devices 1 and 2 as shown in Figure 4.12b, were tested 

in parallel, while Device 3 was tested one month later.  Results from the three devices 

tested are summarized in Figure 4.12b and samples of rendered confocal microscopy 

images from one device are shown in Figure 4.12c-e.   

 

Figure 4.12. a) Schematic of device operation during biofilm growth, with side channels blocked by closed 

valves.  Confocal microscopy images were obtained at the center of each of the three sections indicated (I, II, and 

III) b) Average biofilm thicknesses measured at imaged locations in the three devices tested.  Locations were 

positioned in the center of each section, with Section I closest to the inlet, and III closest to the outlet.  Dashed 

lines indicate averaged thickness across imaged locations for each device.  c-e) Surface rendered confocal 

microscopy images from Device 3, Sections c) I, d) II, and e) III.  Thicknesses were 17.0, 15.6, and 16.2 µm 

respectively. 

The results show that biofilms had small thickness variations within each device 

(SD < 2 µm, 13% of the average thickness at greatest).  Comparatively, this variation 

within a device was smaller than that between devices (SD = 3.9 µm, 23%).  Using an 
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unweighted analysis of variance (ANOVA), the variance between devices was 9.82 µm
2
 

(SE 2.25, P-value 0.8388), and the variance within a device between measurement 

locations was 0.61 µm
2
 (SE 0.67, P-value 0.0006).  The smaller differences in average 

thickness over one channel as compared between the three devices highlighted the 

importance of an integrated control.  These results confirmed that the biofilms were 

uniform throughout the center channel of each device, and had more uniform thicknesses 

than biofilms grown between devices. 

While biofilm variability in general can partially be addressed by performing an 

experiment multiple times and examining data trends, implementing internal controls 

adds an additional level of scientific rigor.  The need for these controls is clear in the 

device-to-device variation of biofilm thickness between devices in this work.  

Additionally, considering average thickness values obtained from devices prepared and 

tested at the same time varied similarly as devices tested on different dates, it is evident 

that between-device biofilm variation must be considered in experimental design.  In this 

demonstration of the valved biofilm sectioning device, within-device biofilm variation 

was less than between-device variation, as evident in the ANOVA results.  By comparing 

sections of one biofilm grown in one device, fewer iterations of an experiment would be 

required to obtain a representative understanding of the biofilm phenomena at play than if 

biofilms were grown in and compared between separate devices.   

4.4.4 Biofilm Segmentation 

The applicability of the device toward biofilm studies was demonstrated by 

testing biofilm sensitivity to SDS within a single device.  SDS is an anionic surfactant 

that has been shown to denature the bacterial cell wall by solubilizing its phospholipid 
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and protein contents [130, 168].  Exposure of bacterial biofilms to SDS has been used as 

a gauge of biofilm health [56], as well as a method for preventing biofilm formation 

[169].  After growing E. coli MG1655 biofilms for 60 hours, the valve orientation was 

switched, dividing the center channel into three sections, as depicted in Figure 4.1b and 

Figure 4.10b.  The three biofilm sections were either treated with 0.1% or 0.2% SDS, or 

remained untreated as a control.  Two devices were tested in parallel; the location of each 

treatment within the device (i.e. Section I, II, or III as pictured in Figure 4.13a) was 

varied between the devices as described in Table 4.10.  Results from the segmentation 

studies are summarized in Figure 4.13b, and samples of rendered confocal microscopy 

images from one of the devices are presented in Figure 4.13c-e.  In both devices, the 

control biofilm was thickest, and increasing the SDS concentration decreased the 

measured thickness in the applicable segment.  Additionally, there appeared to be no 

relationship between location of treatment administration and the results obtained; despite 

administration of treatments to biofilm segments at different locations within the device, 

both devices showed similar trends for thickness versus SDS concentration.  This 

observation relied on the observed biofilm uniformity within the channel (Figure 4.12), 

which enabled the assumption that the control segment represented the initial state of the 

biofilms in the other two segments before SDS exposure.  The results demonstrated the 

use of microfluidic devices to perform multiple, controlled experiments on a single 

biofilm.  
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Table 4.10. Summary of treatments applied to biofilm sections in each device, describing how positioning of 

treatments was varied between the two devices tested.  Section I denotes the section closest to the inlet, and III 

denotes the section closest to the outlet. 

 

 

 

 

 

 

Figure 4.13. a) Schematic of device operation during biofilm segmentation, with the central channel trisected by 

two closed valves.  Confocal microscopy images were obtained at the center of each of the three sections 

indicated (I, II, and III) b) Average biofilm thicknesses measured at the imaged locations in the two tested 

devices with different SDS exposure levels.  c-e) Surface rendered confocal microscopy images of E. coli biofilms 

in Device 1 with c) no treatment (control) d) exposure to 0.1% SDS, and e) exposure to 0.2% SDS.  Biofilm 

thicknesses were 24.9, 7.9, and 0.3 µm respectively. 

The device presented here is suited for inverted confocal microscopy imaging, as 

the light path must only pass through the coverslip and the bottom-most PDMS layer 

before encountering the biofilm.  While using confocal microscopy is a standard method 

for biofilm observation and quantification [170], more information about biofilms can be 

gathered in a continuous manner by integrating sensors into the microfluidic platform.  

As the biofilm grows on top of PDMS, integration of electrical or mechanical sensors 

Section 

Treatment 

Device 1 Device 2 

I Control 0.1% SDS 

II 0.1% SDS 0.2% SDS 

III 0.2% SDS Control 
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would require sensor fabrication within or on top of the PDMS [171, 172], or integration 

of pre-fabricated sensors into the PDMS [173, 174].  While possible, these processes may 

require extensive characterization so that the sensor integration fabrication processes do 

not preclude valve operation.  The device is immediately compatible with off-chip, 

continuous optical detection methods such as optical density [118, 133] or on-chip 

fluorescence [175].  The integrated valves featured in this work allow the entire device to 

remain compact and to be integrated without opaque instrumentation impeding 

lightpaths.   

Advancement of this methodology to include integrated biofilm optical density 

measurement for continuously evaluating the biofilm state, as developed and applied in 

Chapters 2 and 3, will provide additional information unattainable with end-point 

measurements from microscopy [118, 133].  For instance, any instantaneous changes in 

the biofilm structure can be measured as the valve orientations are switched for biofilm 

sectioning.  Real-time biofilm sensitivity to antibiotics or other anti-biofilm treatments 

can also be measured, offering more detailed information about antibiotic tolerance 

kinetics than end-point microscopy can provide.  Additionally, the development of 

biofilm non-uniformity or maintenance of uniformity throughout the channel can be 

monitored, providing a metric to compare to analytical bacterial biofilm growth models.   

Expansion of the device design to include more biofilm sections than the three 

demonstrated in this work will also allow more experiments to be performed in the same 

platform.  These experiments could range from the identification of appropriate staining 

procedures to the evaluation of biofilm sensitivity to antibiotics or shear stress.  In 

addition to the variety of experiments that can be performed on a mature biofilm, there 
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are also a number of growth factors that can be altered to produce varied biofilm 

morphologies; these growth variables include growth media, flow conditions, bacterial 

strain, and the degree of maturity [32, 176, 177].  In extending the variety of biofilms 

grown in the platform, biofilm uniformity must be characterized for each introduction of 

a new growth variable in the system to ensure that each section of the biofilm is initially 

comparable to the others. 

4.5 Chapter Summary 

Microfluidics provide a convenient platform for targeting the challenge of 

bacterial biofilms, enabling scientific studies and drug testing in a small format easily 

integrated with many sensing modalities.  The issue of biofilm variability between 

microfluidic devices was addressed by creating a platform where one biofilm was grown 

and sectioned into discrete segments that were subjected to different treatments in parallel 

or used as internal controls.  Sectioning was achieved using hydraulically actuated valves 

integrated with a two-depth biofilm growth channel, enabled by ALD passivation of a 

photoresist mold to bypass incompatibilities between multiple photoresists.  The platform 

was successfully used to segment biofilms and evaluate sensitivity to SDS.  Through this 

work, the need for integrated controls observed in previous biofilm studies was 

confirmed, and the presented platform was proven to address this need.  The novel ALD 

passivation technology developed to enable this work has an even broader impact beyond 

the biofilm research community, as photoresist passivation enables a host of microfluidic 

devices with varied cross-sectional geometries.  This work introduces an additional 

degree of freedom in channel geometry into the microfluidic toolbox, thereby expanding 
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experimental design options as well as the broader base of scientific knowledge produced 

by microfluidic technologies.   
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5 Conclusion 

5.1 Summary  

A set of new microfluidic technologies were designed specifically to aid 

investigations of bacterial biofilms.  Many types of bacterial biofilm growth platforms 

and evaluation methods exist and are widely employed at both the macroscale and 

microscale, and each presents a set of advantages and disadvantages for biofilm studies.  

The platforms created in this work were inspired by and combine the benefits of separate 

technologies to address challenges in the current technology.  The non-invasive, 

continuous optical density measurements used in macroscale reactors with large sample 

volumes was integrated with the highly parallel studies and controllable 

microenvironments unique to microfluidic systems.  The biofilm variability typically 

observed between microfluidic devices was addressed by using integrated valves to 

emulate techniques employed in larger reactors, where a single biofilm is partitioned into 

separate, comparable segments that can each be assayed as representatives of the original 

biofilm.   

The first platform developed in this work addressed the requirements for 

continuous, non-invasive, and label-free evaluation of bacterial biofilms formed in 

microfluidics, as well as the need for efficient, multiplexed formation of biofilms 

assessed with traditional biofilm measurement techniques.  This was accomplished by 

integrating optical density monitoring of biofilms with a microfluidic flow reactor for 

biofilm formation.  Commercial, off-the-shelf photodiodes and LEDs served as optical 

detectors and light sources.  These measurement components were aligned to a 

microfluidic channel, in which biofilms were grown and continuously measured by 
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monitoring the decrease in light transmitted through the growing biofilm.  The optical 

response over biofilm growth was compared to results obtained using confocal 

microscopy.  The correlation between optical density and biofilm thickness confirmed the 

validity of this measurement technique as applied to biofilms in microfluidics.  As 

confocal microscopy typically interferes with the biofilm phenotype by requiring a 

fluorescent label, the use of optical density as a comparable measurement method 

provides a more accurate representation of the biofilm state.   

The microfluidic platform for optical density measurement of biofilms was used 

in a scientific investigation of the dependence of bacterial biofilm growth on quorum 

sensing.  First, biofilms formed by Escherichia coli with varying degrees of quorum 

sensing activity were evaluated.  The method confirmed that a mutant strain of E. coli 

incapable of AI-2 synthesis formed thinner biofilms than wild type E. coli, and adding 

extracellular AI-2 to the mutant biofilm was able to partially restore thickness.  Having 

proved the ability of the platform to distinguish between biofilms of different thicknesses 

formed in the microfluidic channel, the platform and measurement technique were 

applied toward assessing the potential for biofilm inhibition by AI-2 analogs.  While a 

number of AI-2 analogs have been verified as quorum sensing inhibitors, their potential 

for inhibiting biofilm formation had not been previously investigated.  The microscale 

biofilm reactor minimized the amount of analog required for experiments, allowing 

efficient use of the small samples generated in early research of new treatments.  The 

results were the first demonstration that AI-2 analogs not only can inhibit bacterial 

biofilm formation, but when applied in conjunction with a traditional antibiotic, can 

virtually eliminate mature biofilms.   
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The second platform developed in this work was designed to provide improved 

experimental control by addressing variability observed between biofilms in different 

experiments.  Hydraulically actuated PDMS valves were integrated with microfluidic 

channels to divide a biofilm into separate segments for further experimentation.  In the 

development of this platform, a novel fabrication technique was developed for creating 

multi-depth microfluidic channels required for valve integration with biofilm growth 

channels.  The incompatibilities between the different photoresists used to create the 

multiple depths were bypassed by using ALD to passivate layers with Al2O3 deposited at 

a low temperature compatible with the photoresist.  The ability of the fabricated 

platforms to host uniform biofilms was confirmed, establishing the validity of using 

sections as representatives of the entire biofilm.  Biofilms were partitioned with the 

integrated valves, and the resulting segments were used in experiments assessing 

bacterial biofilm sensitivity to SDS.  The use of comparable segments of one biofilm 

contributed to the validity of the results, as observed differences could be attributed to 

SDS treatment as opposed to naturally occurring variation within one biofilm, between 

devices, or between devices tested on different days.   

5.2 Future Work 

The work presented in this dissertation reveals many avenues for further 

investigation.  These research directions can be classified as either technology-driven, 

improving the functionality and applicability of the developed microfluidic platforms, or 

as application-driven, advancing the development of new anti-biofilm treatments.   
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In this work, biofilms formed within the valved device for biofilm segmentation 

were evaluated with confocal microscopy.  A continuous biofilm measurement method – 

optical density monitoring – was developed for use with microfluidic platforms, and an 

immediate technological advancement of the valved device would be its integration with 

CCD-based optical density measurement.  Detailed spatiotemporal information obtained 

during biofilm formation in the valved device would not only reveal dynamics of applied 

treatments, but could also be used to further investigate and characterize biofilm 

uniformity in the microfluidic channel.    

The device for biofilm segmentation developed here was designed to divide 

biofilms into three sections.  The throughput of biofilm studies could be expanded if the 

channel could be divided into more sections.  However, before redesigning the geometry 

of the device presented in this work, additional characterization is required to evaluate the 

interactions between the biofilm and channel geometry.  In this work, biofilms were 

deemed uniform based on measurements obtained in the center of each section, 4 mm 

away from either a valve or a fluidic inlet or outlet.  It is likely that the morphology of the 

biofilm changes with the altered flow closer to channel features such as valves or fluidic 

inlets and outlets, and may be different from the biofilm in the center of the section.  

Future work with this device should determine the limit on how close together valves can 

be positioned while allowing development of a uniform biofilm unaffected by 

perturbations in flow.  Integration of CCDs for continuous optical density measurement 

could provide this data and inform the rearrangement of valves and channels for 

increasing the number of sections to increase the throughput of biofilm experiments.   
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When characterizing new antibacterial treatments, it is common to evaluate the 

minimum drug concentration necessary to completely eliminate the bacterial population.  

In order to streamline biofilm research using system automation, a diffusive gradient 

mixer can be added upstream of the existing platform, analogous to the device developed 

by Kim et al. [111].  The configuration use valves to prevent flow through the side 

channels and through the gradient mixer during growth.  For experimentation, one set of 

valves would close in order to divide the biofilm growth channel into sections, while 

another set would open to allow flow through the side channels and the gradient mixer.  

This configuration would deliver different concentrations of the same drug to different 

sections of the biofilm, as depicted in Figure 5.1.   

 

Figure 5.1. Schematics of valved device for biofilm segmentation integrated with a diffusive gradient mixer for 

generating multiple concentrations of a solution, e.g. antibiotic or AI-2 analog, on-chip.  a) Device configuration 

during biofilm growth, with side channels and gradient mixer blocked by closed valves (solid black squares) b) 

Device operation during biofilm sectioning and exposure of biofilm sections to different concentrations of drugs, 

with side channels open and central channel trisected by two closed valves. 

The integration of concentration gradients generated on-chip could be used to evaluate 

the minimum antibiotic concentration needed to induce synergistic biofilm inhibition 

with an AI-2 analog.  Conversely, a complex mixer with three inlets, for growth media, 

antibiotic, and AI-2 analog could be constructed in order to vary the antibiotic and AI-2 

analog concentrations simultaneously and determine the combination most effective for 

biofilm inhibition.   



140 

 

As previously mentioned, the technologies developed here can be employed as 

pharmaceutical testbeds.  The types of biofilms grown in the device can be expanded 

from monocultures to co-cultures of multiple species, more similar to the diverse 

ecosystems found in biofilm infections.  Co-cultures would be particularly useful in 

testing the AI-2 analogs used in this work, as the analogs can be tailored to inhibit 

quorum sensing in several species at once, or to target one type of bacteria within a co-

culture [84].  This concept could be expanded to modeling infections formed on tissue by 

forming a biofilm on a monolayer of epithelial cells, similar to the work of Kim et al. 

[124].  Such an infection model could be used first to characterize how biofilms interact 

with the epithelial cells, then expanded to evaluate possible changes in the biofilm 

response to treatment in the presence of the simulated tissue.  Additionally, while 

treatments may be effective at eradicating biofilms, they may produce toxicity in the host.  

Use of an on-chip infection model would aid in evaluating potential side effects.  While 

replication of in vivo conditions in a microfluidic device is unlikely, preliminary studies 

performed in a microfluidic device can serve as a guide for designing studies in animal 

models of infection.   

5.3 Conclusion  

The global health challenge presented by the tenacity of bacterial biofilm 

infections has created a need for efficient in vitro tools and methods for accurately 

evaluating biofilms and their response to new treatments.  This need was addressed in 

this dissertation through the development of microfluidic platforms for in-line evaluation 

of biofilm state as well as for controlled, high-throughput performance of assays on 

biofilms.  The results generated show the promise of using microfluidics for biofilm 
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studies, especially as applied to drug development.  These microfluidic platforms will 

serve as a foundation for developing in vitro biofilm models that may be used in the 

development and evaluation of drugs targeting persistent biofilm infections.    
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Appendix A: Masks Used 

Mask #1  

Observation window patterning in chrome for microfluidic biofilm optical density 

measurement platform 

 

  



143 

 

Mask #2 

Mold for single microfluidic channel used in biofilm optical density measurement 

platform 

 

  



144 

 

Mask #3 

Pattern to form mold for valve areas of fluidic channel in the multi-depth 

microfluidic platform for biofilm formation and sectioning 
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Mask #4 

Pattern to form mold for deep areas in fluidic channel in the multi-depth 

microfluidic platform for biofilm formation and sectioning 
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Mask #5 

Pattern for control channel mold used to actuate valves in the multi-depth 

microfluidic platform for biofilm formation and sectioning 
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Appendix B: Circuit Diagrams 

 

Photodiode Measurement  

The circuit diagram for measuring the outputs of four photodiodes (corresponding 

to two microfluidic channels with two measurement windows each) using two 

analog input ports on the USB-6221 DAQ card is shown below.   
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LED Circuit 

The circuit diagram for measuring the outputs of four photodiodes (corresponding 

to two microfluidic channels with two measurement windows each) using two 

analog input ports on the USB-6221 DAQ card is shown below.  Not shown is the 

8 V DC power supply connected to the 5 V voltage regulator (BA17085) 

providing the source voltage for the LED circuit.    
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Appendix C: Matlab Code 

Basic OD Measurement 

This program reads a series of files output by LabVIEW, each of which contains 

readings from photodiodes and from the multiplexer, along with a time stamp and the 

digital counter value (determining the multiplexer state).  The program separates the 

multiplexer signal into signals from individual photodiodes, and converts these values 

into changes in optical density. 

 
clc 
clear all 

  
R_1=(0.938+0.96)*10^6; %ohms 
R_2=2*0.96e6; %ohms 
R_3=2*0.938e6; %ohms 
R_4=2*0.96e6; %ohms 
R_5=2*0.96e6; %ohms 
R_6=2*0.96e6; %ohms 

  
%read in CSV file 
filename = input('Enter the filename of the baseline file: ', 

's'); 
baseline = csvread(filename); 

  
time_s=baseline(:,1); 
time_hr=time_s./3600; 

  
% Sort 
V_combined=baseline(:,2); 
indicator = baseline(:,16); 
L=length(V_combined); 
j1=1; 
j2=1; 
j3=1; 
j4=1; 

  

  
for i=1:1:L 
    if indicator(i)==0 
        V1(j1)=V_combined(i); 
        t1(j1)=time_s(i); 
        j1=j1+1; 
    elseif indicator(i)==1 
        V2(j2)=V_combined(i); 
        t2(j2)=time_s(i); 
        j2=j2+1; 
    elseif indicator(i)==2 
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        V3(j3)=V_combined(i); 
        t3(j3)=time_s(i); 
        j3=j3+1; 
    elseif indicator(i)==3 
        V4(j4)=V_combined(i); 
        t4(j4)=time_s(i); 
        j4=j4+1; 
    end 
end 

  
V5=baseline(:,3); 
V6=baseline(:,4); 
V7=baseline(:,5); 
V8=baseline(:,6); 

  
%Take voltage from data and convert to current, then to 

illuminance (I) 
%Illuminance conversion approximated from photodiode datasheet, 

BS520E0F 

  
I1=(V1./(R_1*(5.5e-9))).^(1/0.869176); 
I2=(V2./(R_2*(5.5e-9))).^(1/0.869176); 
I3=(V3./(R_3*(5.5e-9))).^(1/0.869176); 
I4=(V4./(R_4*(5.5e-9))).^(1/0.869176); 
I5=(V5./(R_5*(5.5e-9))).^(1/0.869176); 
I6=(V6./(R_6*(5.5e-9))).^(1/0.869176); 
I7=(V7./(R_6*(5.5e-9))).^(1/0.869176); 
I8=(V8./(R_6*(5.5e-9))).^(1/0.869176); 
 

%Obtain illuminance values for baseline 
I0_1=mean(I1(1:2000)); 
I0_2=mean(I2(1:2000)); 
I0_3=mean(I3(1:2000)); 
I0_4=mean(I4(1:2000)); 
I0_5=mean(I5(1:2000)); 
I0_6=mean(I6(1:2000)); 
I0_7=mean(I7(1:2000)); 
I0_8=mean(I8(1:2000)); 
 

%Calculate change in OD 
abs_1=-log10(I1/I0_1); 
abs_2=-log10(I2/I0_2); 
abs_3=-log10(I3/I0_3); 
abs_4=-log10(I4/I0_4); 
abs_5=-log10(I5/I0_5); 
abs_6=-log10(I6/I0_6); 
abs_7=-log10(I7/I0_7); 
abs_8=-log10(I8/I0_8); 

  
% Filter the data 
a=1; 
b=ones(1,1000); 
b=b.*(1/1000); 
abs_1=filter(b,a,abs_1); 
abs_2=filter(b,a,abs_2); 
abs_3=filter(b,a,abs_3); 
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abs_4=filter(b,a,abs_4); 
abs_5=filter(b,a,abs_5); 
abs_6=filter(b,a,abs_6); 
abs_7=filter(b,a,abs_7); 
abs_8=filter(b,a,abs_8); 

 

% Average the OD values obtained by photodiode pairs.  These 

values can be plotted, or output to another program for further data 

processing. 
abs_12=(abs_1+abs_2)./2; 

abs_34=(abs_3+abs_4)./2; 

abs_56=(abs_5+abs_6)./2; 
abs_78=(abs_7+abs_8)./2; 

 

  



152 

 

Data Fitting 

This program smooths data in order to eliminate transient fluctuations in 

photodiode signals.  This is accomplished by dividing the data into sections, each of 

which is fitted to a quadratic function.  The program below has been shortened for fitting 

one data set (whereas it was used mostly for simultaneously smoothing multiple data sets, 

i.e. for channels operated in parallel).   

 

 
clc 
clear all 

  
load data 

  
x_w=time_wt; % Time 
y_w=abs_wt; % Optical density 

  
length = length(x_w); 

  
% Use least-squares fit technique 
% Split up the data into overlapping chunks; each chunk will be 

1000 units long, overlap by 500.  Values in the overlap will be 
averaged 

  
i=0; % This is a counter for keeping track of the overlaps  
j=0; 
increment=1000; 
y_est_w=[0]; 
x_est_w=[0]; 

  

  
for j=1:increment/2:length-increment+1 
    j; 
    i=i+1; 
    % Get a chunk of data 
    y1=y_w(j:j+increment); 
    x1=x_w(j:j+increment); 

     

     

     
    % Get the fit for the chunk 
    pcoeff_1=polyfit(x1, y1, 2); 
    x_est_1=x2; 
    y_est_1=polyval(pcoeff_1,x_est_1); 

     
    % IF i>1, take the first (increment/2) values and average 

them with the last (increment/2) values in the main compilation vector.   
    % Then, set the first (increment/2) values of the current 

chunk to this average.  Later, this chunk will be added not at the end 
of the main compilation vector, but (increment/2) values before the 

start point of the chunk (j-increment/2). 
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    if i>1 
        lc=size(y_est_w); 
        lc=lc(1); 
        lc_start=lc-increment/2+1; 
        

y1_avg=0.5.*((y_est_1(1:increment/2))+y_est_w(lc_start:lc)); 
        y_est_1(1:increment/2)=y1_avg; 

         
    y_est_w=[y_est_w(1:lc_start);y_est_1]; 
    x_est_w=[x_est_w(1:lc_start);x_est_1]; 

     
    else  
    y_est_w=[y_est_w;y_est_1]; 
    x_est_w=[x_est_w;x_est_1]; 
    end 

     
    % Now put the fit increment/2 from the end of the main 

compilation vector.  Do this by letting compilation vector be 

y_est_w(1:lc_start), then tack on y_est_1 etc.  

     

     
end 

  
a=1; 
b=ones(1,400); 
b=b.*(1/400); 

 
y_est_w=filter(b,a,y_est_w); 
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